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INTRODUZIONE

La Sezione si propone di raccogliere e coordinare un ampio spettro di 
competenze scientifiche che trovino applicazione nel campo delle scienze della 
vita e delle relative tecnologie, con particolare attenzione alla diagnosi e alla 
cura delle malattie. A puro titolo di esempio, si citano quelle competenze 
provenienti dai settori dell’ingegneria biomedica, dell’ingegneria dei materiali, 
dell’ingegneria dei processi e della biologia.
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MECHANOBIOLOGY

ec d

a bMOAB bioreactor

Lymphnode-on-a-chip



5

DRUG DELIVERY
Nanogels

Robots

Selective Modulation of A1 Astrocytes by
Drug-Loaded Nano-Structured Gel in Spinal
Cord Injury
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ABSTRACT: Astrogliosis has a very dynamic response
during the progression of spinal cord injury, with beneficial
or detrimental effects on recovery. It is therefore important
to develop strategies to target activated astrocytes and their
harmful molecular mechanisms so as to promote a
protective environment to counteract the progression of
the secondary injury. The challenge is to formulate an
effective therapy with maximum protective effects, but
reduced side effects. In this study, a functionalized nanogel-
based nanovector was selectively internalized in activated
mouse or human astrocytes. Rolipram, an anti-inflamma-
tory drug, when administered by these nanovectors limited
the inflammatory response in A1 astrocytes, reducing iNOS
and Lcn2, which in turn reverses the toxic effect of
proinflammatory astrocytes on motor neurons in vitro, showing advantages over conventionally administered anti-
inflammatory therapy. When tested acutely in a spinal cord injury mouse model, it improved motor performance, but only
in the early stage after injury, reducing the astrocytosis and preserving neuronal cells.
KEYWORDS: spinal cord injury, nanogel, nanoparticles, astrocytes, inflammation

Spinal cord injury (SCI) is the most frequent disabling
injury of the spine. SCI leads to cell degeneration at the
epicenter of the lesion, including neurons, astrocytes,

and oligodendrocytes.1 Secondary processes (e.g., inflamma-
tory response, excitotoxicity, apoptosis, and oxidative stress)
cause additional loss of neurons and glial cells (secondary
injury). The reactive proinflammatory response of the
astrocyte population, with the subsequent formation of scar
tissue and the inhibition of axonal regrowth, seems to be
pivotal. After acute damage, astrocytes become reactive and
undergo a spectrum of changes in their phenotype, gene
expression, and proliferation.2 It has been suggested that
reactive astrocytes near the lesion might have roles that are
either beneficial or detrimental in central nervous system

(CNS) repair.1,2 Several neuropathological stimuli induce a
variable phenotypic “state” of astrocytes that change after
injury. These are commonly called A1 and A22,3 and are
parallel to the terminology of macrophages M1 and M2, which
was applied to the microglial response in the CNS.4

Astrocytes with A1 phenotype exert neurotoxic effects,
upregulating many genes associated with the synapse and
neuronal degeneration, suggesting that A1 has harmful “pro-
inflammatory” action.2,3 In contrast, A2-induced reactive
astrocytes exert protective effects by upregulating the
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a wheel, the microrobot moved forward when placed on a solid
surface. Uncoated and hydrogel-coated devices were actuated
inside a water-filled glass basin to avoid hydrogel desiccation.
Their motion was tracked and their speed was determined using
the software Tracker.

RESULTS AND DISCUSSION

Shape Optimization and Production Route
In our recent work, we employed scaffold-like architectures to
support and transport hydrogels (Bernasconi et al., 2021). The

choice of using a scaffold was motivated by the possibility to load
a high amount of hydrogel inside the device, exploiting its
porosity. In the present work, geometry was further optimized
taking inspiration from the honey dipper, a tool employed for the
domestic manipulation of highly viscous fluids, like honey
(Figure 1E). Its shape, which is composed of stacked disks, is
ideal to capture and hold thick fluids. Since the hydrogel is a
viscous fluid prior to gelation, the same concept can be
transferred to suitably designed untethered microdevices. Small
honey dippers, whose dimensions are detailed in Supplementary
figure S1, were designed and 3D printed. Features were kept in
the few millimeters to hundred micrometers dimensional range.

FIGURE 1 | Visual appearance of a device after 3D printing and support removal (A); visual appearance after Cu, CoNiP, and Au deposition (B); device coated with
a single layer of RhB-loaded alginate hydrogel (C); device coated with a hydrogel multilayer (D); a honey dipper (E); hydrogel coating procedure starting from the gold-
coated device (F); weights for uncoated, alginate-coated, and multilayer-coated devices (G).
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Bicontinuous structures

O/W Nanoparticles

Hydrogels
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nucleic acids
(NAs)

DNA RNA

+

cationic lipids
(CLs)1

or

cationic polymers
(CPs)2

gene delivery vectors
(GDVs)

lipoplexes polyplexes

Synthesis of multifunctional gene delivery vectors Molecular studies of 
NA/GDV interaction5

synthesis of antibacterial GDVs3,4 synthesis of cell-selective GDVs

in collaboration with OSCM Lab (Prof. A. Volonterio, Prof. C. Punta)

neomycin

neomycin-based GDVs

gene delivery antibacterial activity

CP
targeting CP

cell-selective gene delivery

modulation of gene expression

in collaboration with FunMat Lab 
(Prof. M. Tommasini, A. Lucotti)

Spectroscopic analysis of the interaction between
NAs and GDVs

Proffs G. Candiani e N. Bono

1 Ponti F. et al, Chem. Phys. Lipids (2021), 235, 105032; 2 Bono N. et al, Pharmaceutics (2020) 12(2), 183; 3 Bono N. et al, ACS Omega 
(2019) 4(4), 6796-6807; 4  Bono N. et al, Int. J. Pharm. (2018), 549(1-2), 436-445; 5 Lucotti A. et al, RCS Advances (2014), 4(91), 49620-
49627

targeting peptide

CPs

DNA

GENE DELIVERY
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PROCESSING FOR 2D AND 3D STRUCTURES
• printing and bioprinting of new biomaterials
• innovative methods for cellularized patches
• electrodeposition of natural polymers
• electrospinning of biological-derived polymers
• cell sheet engineering

T ≥ Tt T < Tt

CELL SHEET

MC HYDROGEL

METHYLCELLULOSE (MC)

CITRIC ACID

H2O

dehydratedswollen
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3D BIOPRINTING AND SOFT TISSUE MECHANICS

@LaBS_Polimi

DAY 0 DAY 7 DAY 10
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MICROFLUIDIC DEVICES

Computational fluid dynamics 
for microcirculation

Micro particle image 
velocimetry

Chip microfabrication

Bioprinting

Microfluidic automation
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ARTIFICIAL ORGANS P.O. Co.Co.Co Post-doc Post-doc Ph.D St. Ph.D St. Assegnista
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DEVICE CERTIFICATION
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IN SILICO MEDICINE - spinal
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Patient specific

Additive manufacturing of devices

Surgery case 
Modelling 

Mechanical Lab 
Testing

IN SILICO MEDICINE – maxillofacial
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IN SILICO MEDICINE - cardiovascular
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INNOVATIVE BIOMATERIALS

• biomaterials for regenerative medicine:
• scaffold from vegetables and fruits
• structure for scaffold vascularization
• new formulations for biomaterial inks/bioinks

• new solution for improvement of implantable
devices

3D pathological adipose 
tissue model 

Matrix + cells

electrospinning
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SILVIA FARÈ
Biomaterials for regenerative medicine: where are we headed?

CHRISTIAN VERGARA
Computational methods for translational medicine
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PEOPLE
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PUBBLICAZIONI
(2016-2021)

940

CITAZIONI
(2016-2021)

11172

H-INDEX
(2016-2021)

48
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PEOPLE – the future
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