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Chapter 1

Motivations and State of the Art

1.1 Introduction

The mathematical modelization of many fluid-dynamics phenomena leads to Par-
tial Differential Problems, like the Navier-Stokes or the Euler equations. In view
of a numerical resolution of these problems, it is very important to specify a
suitable domain in which the equations are solved. In many engineering fluid
dynamics problems, this computational domain is part of a system or a network.
In this case, a part of the boundary does not correspond to a physical wall, and it
is just introduced to limit the domain of interest. The prescription of boundary
conditions on such artificial boundaries can be source of numerical inaccuracies.
In particular, in different contexts of internal fluid dynamics there is sometimes
the problem of managing numerically defective boundary data sets, namely data
that are not enough to have a mathematically well posed problem.

One of the fluid-dynamics field in which there is often the problem of man-
aging defective boundary problems is haemodynamics (see [14, 15, 56, 70]). In
fact, it is quite typical in this case to have only average data from the clinical
measurements. Another example concernes fluid jets. In particular, it is often
the case that in the simulation of a fluid through a hole in a plane, only the
flux through the aperture is available as boundary information (see [28]). The
same situation occurs also in the internal combustion problems. However, in
other engineering field there could be the problem of managing this kind of data.
For example, in the mass-transport problem, modeled with a diffusion-convective-
reaction equation, it is often difficult to obtain pointwise informations concerning
the concentration on a surface. Nevertheless, since the field that mainly inspired
and justified the present work is haemodynamics, we focus on the Navier-Stokes
equations, that are suitable for a mathematical description of blood in specific
physiological conditions (see [54, 17] and Section 3.1.2).
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In this context, the problem of the defective boundary data has been analyzed
at the mathematical and numerical levels since about ten years (see [28, 68]). For
instance, it can be happen in solving fluid problems in a network of pipes to have
at the inlet only the flow rate (flow rate problem). At the practical level, in the
engineering literature this problem has been solved by choosing a velocity profile
fitting the given flow rate. Since the numerical solution obtained in this way
is strongly affected by the selected profile, a common approach is to enlarge the
computational domain, in order to reduce the effect of the “arbitrary” profile pre-
scription in the zone of interest. In [28] a different, mathematically more sound,
approach is proposed. This is based on finding a suitable variational formula-
tion of the flow rate problem able to include the given data. The defective data
set is completed by homogeneous natural boundary condition for the selected
variational formulation. However, this approach is somehow problematic at the
numerical level, since it requires the definition of non-standard finite dimensional
subspaces. A different strategy, based on a Lagrange multiplier approach, has
been therefore proposed in [14] for the steady Stokes problem. With this ap-
proach, the finite dimensional environment for the numerical solution refers to
standard functional spaces and therefore a particular attention was given to this
strategy.

Another defective boundary problem arises when only an average pressure is
available (mean pressure problem). In this case, the approach relying on finding
a suitable variational formulation able to include the given data leads to reliable
results only with particular computational domains.

Defective boundary problems are therefore far to be analysed and treated in a
satisfactory and exhaustive way. For this reason, the present work has addressed
in finding new formulations and numerical strategies for the prescription of de-
fective data sets. We can essentially split this work into three subparts. In the
first one (Chapter 2), we consider only the flow rate problem and we extend to
a general case the strategy proposed in [14]. In the second part (Chapter 3), we
aim at applicating this strategy in computational haemodynamics. In particular,
thanks to the right prescription of a flow rate boundary condition, it was possible
to introduce in current clinical practice an improvement in estimate the flow rate
measure with a Doppler velocimetry technique. Finally, in the third part (Chap-
ter 4), we introduce and test a completely new approach for the prescription of
defective boundary conditions, based on the control theory. This strategy has
the advantage that can be applied both to the flow rate and to the mean pressure
problem as well.

In the sequel of this Chapter, we introduce the Navier-Stokes equations (Sec-
tion 1.2.1) and we present the defective boundary problems (Section 1.2.2). We
address with more details the haemodynamics problem in Section 1.2.3. Then, we
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review the strategies introduced in literature for these kind of problems (Section
1.3).

1.2 Navier-Stokes equations and defective

boundary conditions

1.2.1 General settings

In this section, we introduce the Navier-Stokes equations for the description of an
incompressible fluid. Referring to the computational domain Ω ⊂ R

d, d = 2, 3,
in Figure 1.1, let us consider the momentum and the mass conservation laws for
an incompressible fluid (see [55, 32]):





ρ
Du

Dt
−∇ · σ = ρf , (t,x) ∈ YT := (0, T ] × Ω

∂ρ

∂t
+ ∇ · (ρu) = 0, (t,x) ∈ YT

u|t=0 = u0, x ∈ Ω

(1.1)

where u(t,x) is the velocity field (indicated as all the vectors in bold), σ the

Γ

Γ

Γ

ΓD

N

N

N
Ω

Figure 1.1: Reference computational domain Ω.

Cauchy stress tensor, ρ(t,x) the density, T the final time, u0(x) the initial con-
dition and f(t,x) a forcing term. Moreover,

Du

Dt
=
∂u

∂t
+ (u · ∇)u

is the material time derivative of the velocity field in an Eulerian framework. We
refer to the second of (1.1) as the incompressible constraint.

In the present work, we consider a particular class of fluid. In particular,
we assume the density ρ constant in space (homogeneous fluid) and in time.
Moreover, we consider a linear relation between σ and the rate of deformation
tensor

s =
1

2
(∇u+ (∇u)t).
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In particular, we consider a Newtonian fluid, featuring

σ = −pI + 2µs,

where µ is the kinematics viscosity (assumed to be constant), p(t,x) the pressure
and I the d × d identity tensor. Therefore, let us consider the Navier-Stokes
equations for a homogeneous incompressible Newtonian fluid:




ρ
∂u

∂t
−∇ · µ(∇u+ (∇u)t) + ρ(u · ∇)u+ ∇p = ρf , (t,x) ∈ YT

∇ · u = 0, (t,x) ∈ YT

u|t=0 = u0, x ∈ Ω

(1.2)

When we can neglect the convective term ρ(u · ∇)u, we recover the so called
Stokes equations. Otherwise, when the convective term is replaced by ρ(β ·∇)u,
with β a given velocity field, we have the Oseen equations. In particular, a
part from Section 3.4, we consider equations (1.2) in rigid domains, so that Ω is
constant in time.

From the mathematical viewpoint, the 3D (2D) fluid-dynamics problem, de-
scribed by the incompressible Navier-Stokes equations, requires the assignment
of three (two) scalar conditions on each boundary point. Namely, referring to
Figure 1.1, we can prescribe the velocity field (Dirichlet boundary condition):

u|ΓD
= g, t ∈ (0, T ] (1.3)

or the stress tensor (Neumann/natural boundary condition):

(σn)|ΓN
= h, t ∈ (0, T ] (1.4)

where g(t,x) and h(t,x) are given functions definied on the boundary, ΓD∪ΓN =
∂Ω and ΓD ∩ ΓN = ∅ and n(x) is the unit normal vector to ∂Ω.

In view of a numerical discretization of equations (1.2), (1.3) and (1.4), we
introduce a suitable variational formulation (see [55]). Let us set:





(v,w) =

∫

Ω

v ·w dω

b(q, v) −
∫

Ω

q∇ · v dω

and the following space

V D =H1
ΓD

(Ω) = {v ∈H1(Ω) : v|ΓD
= 0},

with H1(Ω) the usual Sobolev space. Moreover, given a generic Hilbert space
W , let us denote

W ∗ = {v ∈W : ∇ · v = 0}.
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Let us notice that applying the divergence of σ in (1.2)1, we could take into
account the incompressibility constraint (1.2)2. In this case, we would obtain:

∇ · µ(∇u+ (∇u)t) = µ4u+ µ∇(∇ · u) = µ4u. (1.5)

Different variational formulations are obtained by taking into account (1.5). In
particular, we obtain the following (see [55]):

Problem 1 Given u0 ∈ L2(Ω)∗, f ∈ L2(0, T ;L2(Ω)), find u ∈ L2(0, T ;V D) ∩
L∞(0, T ;L2(Ω)) and p ∈ L2(0, T ;L2(Ω)), such that, for each t ∈ (0, T ]:

{
ρ
(∂u
∂t
, v
)

+ a(u, v) + ρ((u · ∇)u, v) + b(p, v) = ρ(f̃ , v) + (h, v)L2(ΓN )

b(q,u) = 0

for all v ∈ V D and q ∈ L2(Ω) and with the initial condition u|t=0 = u0.

In Problem 1, we set

a(v,w) = aL(v,w) = µ

∫

Ω

∇v : ∇w dω (1.6)

if (1.5) is considered, while

a(v,w) = aC(v,w) = µ

∫

Ω

(∇v + (∇v)t) : ∇w dω (1.7)

otherwise. These two treatments of the viscous term lead to different natural
boundary conditions as well. In particular, if (1.6) holds, condition (1.4) becomes

(−pn+ µ∇u n)|ΓN
= h, t ∈ (0, T ].

On the contrary, if (1.7) holds, condition (1.4) becomes

(−pn + µ(∇u+ (∇u)t)n)|ΓN
= h, t ∈ (0, T ]. (1.8)

From the physical point of view, the latter choice is more correct, since it contains
the exact form of the rate of deformation tensor. In fact, it is commonly used
when the Navier-Stokes equations are considered in moving domains, where it is
necessary that the stress given by the fluid to the structure is of the type (1.8)
(see [25]). Nevertheless, in rigid domains formulations based on (1.5) are often
used. In the sequel, we refer to (1.5) and (1.6) as ”laplacian”, while to the one
given by (1.7) as ”complete”. Other variational formulations leading to different
natural boundary conditions can be considered as well (see [3, 28, 68] and Section

1.3). We point out that if g 6= 0 in (1.3), in Problem 1 f̃ includes also the terms
arising from a lifting procedure and u has to be intended belonging to V D.
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1.2.2 Defective boundary conditions

In many fluid-dynamics problems the numerical simulations aim at obtaining
some quantitative informations on a local phenomenon, confined in a domain
that is part of a complex system or a network. Therefore, in order to obtain
numerical results with a reasonable computational cost, it is necessary to consider
a bounded domain including the zone of interest. In this computational domain
a subset of the boundary corresponds to a real/physical wall. For example, in
the domain in Figure 1.2 (right), Γw is a physical boundary. For what concernes
this portion of boundary, we assume the hypothesis of no-slip condition, i.e. the
complete adherence of the fluid on the wall. This hypothesis, if the motion occurs
in rigid domains, leads to the homogeneous Dirichlet boundary condition:

u|Γw = 0, t ∈ (0, T ] (1.9)

On the other hand, another part of the boundary (Γ0∪Γ1∪Γ2 in Figure 1.2, right)

Figure 1.2: An example of a truncated domain Ω: a tipical vascular district.
We detect the “physical” boundary (the vascular wall Γw) and the “artificial”
boundaries Γ0, Γ1 and Γ2.

does not correspond to a physical wall and it is just introduced to limit the domain
of interest. The surfaces belonging to this part of the boundary are called artificial
sections, since they are the interface of the district with the other parts of the
circulatory system. For example, this situation occurs often in haemodynamics,
where the computational domain is a truncated part of the complex vascular tree.
In Figure 1.3 an example of such domain in haemodynamics is shown.

As already pointed out in the Introduction, the prescription of suitable bound-
ary conditions on the artificial sections is a major issue in many fluid-dynamics
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Figure 1.3: Carotid bifurcation geometry: it is possible to detect the “physical”
and the “artificial” boundaries (cast by D. Liepsch - FH Munich)

problems. On one hand, it is sometimes difficult to obtain realistic informations
on such boundaries. On the other, in many applications these informations (when
available) refer often to an average datum. Namely, let us suppose to have m+1
artificial section Γi, i = 0, . . . , m. For example, if we refer to the computational
domain Ω in Figure 1.2, right, we have m = 2. It is worth considering flow rate
conditions on such surfaces

ρ

∫

Γi

u · n dγ = Qi, ∀i = 0, . . . , m, t ∈ (0, T ] (1.10)

where Qi = Qi(t) are given. Similarly, we can deal with mean pressure conditions:

1

|Γi|

∫

Γi

p dγ = Pi, ∀i = 0, . . . , m, t ∈ (0, T ] (1.11)

where |Γi| is the measure of Γi and Pi = Pi(t) are given data. In the sequel we refer
to flow rate problem when we prescribe conditions like (1.10) and to mean pressure
problem if we prescribe conditions like (1.11). Other conditions can be considered
as well. However, here we mainly focus our attention on these ones. Conditions
(1.10) and (1.11) are clearly not sufficient to achieve a well-posed mathematical
problem (defective boundary condition) that needs pointwise conditions like (1.3)
or (1.4). Specific strategies in order to fill this gap are therefore mandatory.
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1.2.3 The haemodynamics case

We present now, by way of example, the haemodynamics case, that inspired
and motivated the present work. The behaviour of the blood in a vascular dis-
trict in non-pathological situations and in vessel sufficiently large (with radius≥
0.1, cm) can be described as a homogeneous incompressible Newtonian fluid (see
[17, 18, 54] and Chapter 3 for a more detailed description). In haemodynam-
ics the prescription of boundary data on the artificial sections can be based on
clinical measurements. Nevertheless, pointwise data are often not available. In
fact, the most commom measurement techniques used in the clinical practice,
as the velocimetry Doppler technique (see [74]), give only average data like the
flow rate and the mean pressure, over small volumes of blood or area of the lu-
men. Figures 1.4 shows two examples of measured physiological flow rate and
mean pressure, respectively. In the last years, more sophisticated techniques, as
the nuclear magnetic resonance, allow to obtain data concerning pointwise in-
formations on an artificial section. However, these techniques are still expensive
and not always available. Alternatively, when no clinical data are available, it

Figure 1.4: Examples of clinical measure: aortic flow rate during an apnoea test
(left) and aortic mean pressure (right).

is possible to resort to the so-called geometrical multiscale approach, where dif-
ferent mathematical models for the circulation, with a different level of detail,
are matched for the simulation of the whole vascular network. In particular the
computational domain is coupled with a reduced model, taking into account the
remainder of the cardiovascular system (see [51, 56] and Section 3.3). In this
case, the different models need to be suitably matched at the interfaces (given
by artificial sections). A common approach for the numerical treatment of this
problem is to resort to iterative techniques inspired by domain decomposition
methods, in which the 3d and the reduced models are solved alternatively and
the matching conditions become boundary conditions for the two models. Never-
theless, from the mathematical view point, the reduced models deal with average
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data. Therefore, in this case, the solution of the 3d problem still requires to solve
a defective boundary problem (see Figure 1.5).

���
���
���
���
���

���
���
���
���
���

Γ

u ndγ.

u(x, )t

Figure 1.5: Coupling between a reduced and a three-dimensional model: the
latter (on the right) receives an average datum from the first one.

We conclude that haemodynamics numerical simulations, concerning realistic
geometries and physiological data, involve quite often only average boundary
conditions on the artificial sections.

1.3 State of the art

In this section we summarize the strategies introduced in order to complete the
defective boundary conditions. In particular in Section 1.3.1 we present three
strategies for the flow rate problem. Section 1.3.2 is devoted to the mean pressure
problem.

1.3.1 Flow rate problem

Let us consider the flow rate problem given by (1.2), (1.9) and (1.10). Since
we refer to a rigid domain Ω (see Figure 1.2, right), let us notice that we can
prescribe arbitrarily the flow rates (1.10) on all but one the artificial sections,
for example on Γ1, Γ2, . . . , Γm. Indeed, due to the mass conservation and the
rigidity of the walls, on Γ0 we have:

Q0 = ρ

∫

Γ0

u · n dγ = −
m∑

i=1

ρ

∫

Γi

u · n dγ = −
m∑

i=1

Qi. (1.12)

Moreover, for the sake of simplicity, let us suppose here and in the sequel of this
work that ρ = 1.
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A practical approach

The most common strategy used in the engineering literature in order to complete
these defective boundary data consists in choosing a priori a velocity profile gi

on each section Γi where the flux is prescribed, fitting the given flow rate Qi.
Therefore, we resort to a Dirichlet boundary conditions like (1.3), such that (see
Figure 1.6): ∫

Γi

gi · n dγ = Qi, ∀i = 0, . . . , m, t ∈ (0, T ],

with the values Qi satisfying the constraint (1.12). This approach is not al-

Γ

Γ

Γ
0

1

2

Figure 1.6: Example of a selected velocity profile prescribed at the artificial
sections.

ways feasible, for istance for real geometries when an analytical expression for
the profile is not available. In particular let us notice that an analytical solution
is available only for a cylindrical domain perfused by a steady or a sinusoidal
flow rate. In these cases we refer to the Poiseuille and the Womersley solution,
respectively (see [68, 78, 29]). For a different flow rate perfusing a cylinder, a
feasible approach is to decompose the wave form of the flow rate into its Fourier
components and to combine basic Womersley solutions correspondly to each fre-
quency component. Strictly speaking, this approach is exact only if the problem
at hand is linear. Therefore, when the Navier-Stokes equations are considered
and, in particular, for increasing values of the Reynolds number Re = V L/µ,
with V and L a characteristic velocity and a characteristic length respectively,
this approach gives an approximate ”feasible” solution. In general, for a realistic
computational domain it is not possible to know a priori the exact velocity profile
to be prescribed on the boundaries neither in the steady nor in the periodic case.
Nevertheless, in these cases, if the artificial sections are circular, it is a common
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practice to impose anyway a parabolic, a Womersley or a flat velocity profile.
Since the numerical solution is strongly affected by the arbitrary selected profile,
the computational domain is quite often enlarged letting the profile to develop,
in order to reduce the effect of the profile prescription in the zone of interest.
Obviously, this approach presents the drawback of increasing the computational
costs. In particular, the higher the Reynolds number the larger has to be the
enlarged zone, since the fluid needs more space to develop fully. In particular,
for steady flows in a cylindrical domain, it is possible to define a characteristic
length equal approximately to 0.058 · D · Re (where D is the diameter of the
inlet section) at which a centreline velocity is within 1% of its final value (see
[76]). A similar dependence on Re is recognized also for a non cylindrical domain
and for an unsteady flow. However, in the unsteady case the development of the
profile can be problematic. For example, it has been proven in [59] that for high
Reynolds numbers, in a cylindric domain perfused by a periodic flux, the enlarge-
ment of 40 diameters may not be sufficient to recover the analytical (Womersley)
solution if a parabolic profile is prescribed as boundary condition at the inlet. If
the section where the flow rate is prescribed is not circular, some authors pro-
posed to use anyway the Womersley solution as boundary condition, extending
the computational domain by some arterial diameters, such that the cross-section
transition leads to a perfectly circular artificial section in the actual geometry.
Alternatively, in [79] it has been proposed to write the Womerley solution on a
circle using the equivalent radius, i.e. the radius of a circle with the same area of
the artificial section, and then to linearly map this profile on the original section.
Nevertheless, also in this case it is necessary to extend the computational domain.
Finally, we highlight that in some realistic cases, a wrong choice of the prescribed
velocity profile, could lead to an error also in the computation of global quanti-
ties, such as the flow division (see e.g. [40]). Although quite simple and popular,
this approach can be therefore source of serious inaccuracies and computational
costs increase.

In Section 2.4 we present an error analysis of this approach.

Variational formulation-based approach

A different approach has been proposed in [28] with the aim of fulfilling flux con-
ditions in a less perturbative way. In particular, we do not prescribe explicitely
further conditions, but we try to find a variational formulation for the flow rate
problem able to incorporate the (defective) boundary conditions. In such a way,
the natural boundary conditions associated to the selected variational formula-
tion are implicitely prescribed, making it well-posed the mathematical problem.
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Referring to Figure 1.2, let us introduce the following spaces:




V = H1
Γw

(Ω) = {v ∈H1(Ω) : v|Γw = 0}
V 0 = {v ∈ V :

∫

Γi

v · n dγ = 0, ∀i = 0, . . . , m}
W ′ = {φ : W → R linear and continuous}

(1.13)

where W is a generic functional space. It can be proven (see [3]) that there exists
a set of functions {b1, . . . , bm}, such that:





∫

Γj

bi · n dγ = δij, ∀i, j = 1, . . . , m,
∫

Γ0

bi · n dγ = −1, ∀i = 1, . . . , m.
(1.14)

Let us consider the Navier-Stokes equations with the ”laplacian” treatment of
the viscous term and in free divergence subspaces. Therefore, let us introduce
the following variational formulation for the flow rate problem (1.2), (1.9), (1.10)
and (1.12) (see [28, 68]):

Problem 2 Given u0 ∈ V ∗, f ∈ L2(0, T ;L2(Ω)) and m + 1 functions Qi ∈
C0([0, T ]) satisfying the constraint (1.12) and setting

φ(t,x) =
m∑

i=1

Qi(t)bi(x),

find u ∈ L2(0, T ;V ∗) ∩ L∞(0, T ;L2(Ω)∗) such that:

{
u− φ ∈ L2(0, T ;V ∗

0)(∂u
∂t
, v
)

+ aL(u, v) + ((u · ∇)u, v) = (f , v)

for all v ∈ V ∗
0 and with the initial condition u|t=0 = u0.

Given w ∈ L2(Ω) and v ∈ V , let us set




‖w‖ = ‖w‖L2(Ω) =

∫

Ω

|w|2 dω
‖v‖V = ‖∇v‖

In [28] it is proven the well-posedness of Problem 2:

Theorem 1 For sufficiently smooth data Qi with
∑

i |Qi| and ‖u0‖V small enough,
Problem 2 is locally well-posed, i.e. there exists a time T ∗ such that a solution u
exists for any t ∈ (0, T ∗).

18



Let us investigate which boundary conditions are implicitely associated to the
formulation of Problem 2. To this aim, let us introduce the set of m functions:





Ci(t) = C0(t) +

∫

Ω

f · bidω − ((u · ∇)u, bi)+

−
m∑

j=1

Qj(t)aL(bj, bi) −
(∂u
∂t
, bi

)
, i = 1, . . . , m,

(1.15)

where C0 is an arbitrary function of t. Observe that Ci, for i = 1, . . . , m, depends
on t and u, but is indipendent of x. We have the following result (see [68]):

Theorem 2 Problem 2 is equivalent to the problem given by (1.2), (1.9), (1.10),
(1.12) and the following conditions:

(−pn + µ∇u n)|Γi
= −Cin i = 0, . . . , m, (1.16)

where the Ci are specified by (1.15).

Let us notice that the equivalence of the two problems has to be intended in
the following sense: the smooth solutions of the problem given by (1.2), (1.9),
(1.10), (1.12), (1.16) and (1.15) solve Problem 2. Conversely, if u is a solution
of Problem 2, then there exists a function p ∈ L2(0, T ;L2(Ω)) such that (u, p)
satisfies problem given by (1.2), (1.9), (1.10), (1.12), (1.16) and (1.15). Since
C0 is an arbitrary function of time, without loss of generality, in the sequel we
consider the following Neumann condition on Γ0:

(−pn+ µ∇u n)|Γ0 = 0. (1.17)

It is clear that the additional boundary condition implicitely hidden in Problem
2 are normal Neumann conditions costant in space and zero tangential stress
(see conditions (1.16)). We point out that the conditions implicitely prescribed
by Problem 2 would be different using the ”complete” treatment of the viscous
term. In particular, in this case (1.17) and (1.16) would be replaced by

{
(−pn + µ(∇u+ (∇u)t)n)|Γ0 = 0
(−pn + µ(∇u+ (∇u)t)n)|Γi

= −Cin i = 1, . . . , m.
(1.18)

Nevertheless, this choice it is not suitable for the computation of Poiseuille flow in
a straight rigid cylindrical pipe when a flow rate (or a mean pressure) is imposed at
the outlet, as pointed out in [28]. This is due to some ”physical” boundary effects,
not desired in a truncated domain. In particular, the tangential component of
the velocity field at the outlet is non null. To avoid this phenomenon, in [68]
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is proposed to prescribe a homogeneous Dirichlet boundary condition for the
tangential component, to be included in the space of the variational formulation.
In this case we resort to the following conditions:





(−p + µ(∇u+ (∇u)t)n · n)|Γ0 = 0
(−p + µ(∇u+ (∇u)t)n · n)|Γi

= −Ci, i = 1, . . . , m
(u× n)|Γi

= 0, i = 0, . . . , m.

In Chapter 4 a different, less perturbative strategy is proposed in order to avoid
the boundary effects due to the ”complete” treatment of the viscous term.

The drawback of the variational formulation-based approach is that with a
standard Galerkin-Finite Element approximation (see for example [55]) of Prob-
lem 2, we should build a space with null fluxes on the artificial sections and
therefore a non standard finite dimensional subspace. This can be somehow
problematic in practice.

Remark 1 Let us consider both Dirichlet and flow rate boundary conditions on
the artificial sections Γi. In particular, let us suppose to prescribe the following
conditions: 




∫

Γi

u · n dγ = Qi, i = 0, . . . , mQ,

u|Γi
= gi, i = mQ + 1, . . . , mQ +mD = m.

In this case, the compatibility condition (1.12) becomes:

Q0 =

∫

Γ0

u · n dγ = −
m∑

i=1

∫

Γi

u · n dγ = −
mQ∑

i=1

Qi −
m∑

j=mQ+1

∫

Γi

gj · n dγ

and thus we can not impose arbitrarily the flux on Γ0. Also in this case, without
loss of generality, we will refer to condition (1.17) on Γ0.

Augmented formulation of the steady-Stokes flow rate problem

The augmented formulation of the flow rate problem was proposed firstly for
the steady-Stokes problem in [14], with the purpose of finding a more suitable
approach. The basic idea is to consider the flow rate boundary condition as a
constraint for the solution, to be forced through a Lagrange multiplier approach.
In particular, referring to the computational domain Ω in Figure 1.2 (right) and
to the ”laplacian’ treatment of the viscous term, let us consider the steady-Stokes
problem:

{
−µ4u+ ∇p = f , x ∈ Ω
∇ · u = 0, x ∈ Ω

(1.19)

20



together with the boundary conditions:




u|Γw = 0,
(pn− µ∇u n)|Γ0 = 0,∫

Γi

u · n dγ = Qi, i = 1, 2, . . . , m.
(1.20)

The following augmented variational formulation was proposed in [14] for the
problem given by (1.19) with (1.20):

Problem 3 Given f(t) ∈ L2(Ω) and Q ∈ R
m, find u(t) ∈ V , p ∈ L2(Ω) and

λ ∈ R
m such that





aL(u, v) + b(p, v) +

m∑

j=1

λj

∫

Γj

v · n dγ = (f , v), x ∈ Ω

b(q,u) = 0, x ∈ Ω∫

Γi

u · n dγ = Qi ∀i = 1, . . . , m,

for all v ∈ V and q ∈ L2(Ω).

We point out that a set of Lagrange multipliers, one for each flow rate bound-
ary condition, is introduced. In this way, we have the drawback of solving an
augmented problem. However, we observe that the functional space V is ”stan-
dard”, so the definition and implementation of a finite dimensional subspace is
quite straightforward. In Section 2.3.1 we present the result of well-posedness of
Problem 3. Moreover, we have the following results (see [14]):

Proposition 1 The Lagrange multiplier λi has the physical meaning of normal
stress on the artificial section Γi, i.e.

(−pn+ µ∇u n)|Γi
= λin, i = 1, . . . , m. (1.21)

We point out that the Lagrange multipliers λi do coincide with the a priori
unknown functions of time Ci introduced in the previous section. Nevertheless,
with this formulation they are considered as unknowns of the problem, that is
augmented in the sense that we havemmore unknowns (the Lagrange multipliers)
and m more equations (conditions (1.20)3). An augmented formulation with a
different treatment of the viscous term has been introduced in [70] and it is
presented in Section 2.2.2.

In [14] different numerical algorithms for the resolution of Problem 3 are also
suggested. In Section 2.5.2 we review these methods, extending to a more general
case some of them in Sections 2.5.3 and 2.5.4.
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1.3.2 Mean pressure problem

For what concernes the mean pressure problem, we present the variational formulation-
based approach introduced in [28]. This approach is the dual of the one intro-
duced for the flow rate problem. At the best of our knowledge, this was so far
the only strategy proposed in literature for this problem.

Let us consider the mean pressure problem, given by (1.2), (1.9) and (1.11)
and the following:

Problem 4 Given u0 ∈ V ∗, f ∈ L2(0, T ;L2(Ω)) and m + 1 functions Pi ∈
L2(0, T ), find u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)) and p ∈ L2(0, T ;L2(Ω)) such
that:




(∂u
∂t
, v
)

+ aL(u, v) + ((u · ∇)u, v) + b(p, v) = (f , v) −
m∑

i=0

Pi

∫

Γi

v · n dγ,

b(q,u) = 0

for all v ∈ V and q ∈ L(Ω) and with the initial condition u|t=0 = u0.

In [28] the following results are proven:

Theorem 3 For
∑m

j=0 |Pj| and ‖u0‖V small enough, there exists a positive num-
ber T ∗ such that Problem 4 admits an unique solution for all t ∈ (0, T ∗].

Theorem 4 Problem 4 is equivalent to the problem given by (1.2), (1.9) and the
following conditions:

(−pn + µ∇u n)|Γi
= −Pin, i = 0, . . . , m.

In other words, the variational formulation in Problem 4 forces implicitely zero
tangential stress conditions that in general are not prescribed by conditions (1.11).
Therefore, we conclude that Problem 4 is equivalent to the mean pressure problem
given by (1.2), (1.9) and (1.11) only for particular geometries, for example for
a cylinder. In all the other cases Problem 4 is an approximation of the mean
pressure problem. Nevertheless, this approach is very used in the engineering
comunity, due to its feasibility. In fact, V is a classical space. This is not the
case of Problem 2.

However, in order to complete data (1.11), different boundary conditions re-
lated to different variational formulations can be considered as well. In particular,
rewriting Problem 4 with the ”complete” viscous term, the boundary conditions
implicitely assumed on the artificial sections would be

(−pn+ µ(∇u+ (∇u)t)n)|Γi
= −Pin, i = 0, . . . , m. (1.22)
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Also for the mean pressure problem, the observations done in Section 1.3.1 con-
cerning the boundary effects related to the ”complete” formulation hold.

Another possibility is to exploit the vector identity

−4u = ∇× (∇× u) −∇(∇ · u).

Recalling the incompressibility constraint (1.2)2 and integrating by parts, we
obtain:

−(4u, v) = (∇× u,∇× v) −
∫

∂Ω

((∇× u) × n) · v dγ =

= (∇× u,∇× v) +

∫

∂Ω

(v × n) · (∇× u) dγ.
(1.23)

Let us consider the following space

Ṽ = {v ∈H1
Γw

(Ω) : v × n|Γi
= 0, ∀i = 0, . . . , m}. (1.24)

Therefore, we can consider the following (see [3, 28]):

Problem 5 Given u0 ∈ Ṽ
∗
, f ∈ L2(0, T ;L2(Ω)) and m + 1 functions Pi ∈

L2(0, T ), find u ∈ L2(0, T ; Ṽ ) ∩ L∞(0, T ;L2(Ω)) and p ∈ L2(0, t;L2(Ω)) such
that: 




(∂u
∂t
, v
)

+ µ(∇× u,∇× v) + ((u · ∇)u, v) + b(p, v) =

= (f , v) −
m∑

i=0

Pi

∫

Γi

v · n dγ,

b(q,u) = 0

for all v ∈ Ṽ and q ∈ L2(Ω) and with the initial condition u|t=0 = u0.

The boundary conditions implicitely prescribed by this formulation are:

pn|Γi
= Pin.

Therefore for the ”laplacian” treatment of the viscous term, we can associate two
variational formulation related to the bilinear forms, aL(w, v) and
µ(∇ × w,∇ × v), respectively, leading to different boundary conditions. This
could be of some interest in the multiscale modeling of the cardiovascular system
(see [70]).

Alternatively, the given average data Pi(t) on the artificial sections Γi could
refer to the mean total pressure:

1

|Γi|

∫

Γi

(
p+

1

2
|u|2

)
dγ = Pi, ∀i = 0, . . . , m, t ∈ (0, T ].

Let us consider the following variational formulation, proposed in [28]:
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Problem 6 Given u0 ∈ V ∗, f ∈ L2(0, T ;L2(Ω)) and m + 1 functions Pi ∈
L2(0, T ), find u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)) and p ∈ L2(0, T ;L2(Ω)) such
that:





(∂u
∂t
,u
)

+ aL(u, v) + ((u · ∇)u, v) − ((v · ∇)u,u) + b(p, v) =

= (f , v) −
m∑

i=0

Pi

∫

Γi

v · n dγ,

b(q,u) = 0

for all v ∈ V and q ∈ L2(Ω) and with the initial condition u|t=0 = u0.

Moreover, it is shown that Problem 6 implicitely assumes the following conditions:

(
−pn− 1

2
|u|2n + µ∇u n

)∣∣∣
Γi

= −Pin, i = 0, . . . , m

For the mean total pressure problem, (1.23) and null tangential velocity can be
considered as well. In particular, in [68] the following problem is considered:

Problem 7 Given u0 ∈ Ṽ
∗
, f ∈ L2(0, T ;L2(Ω)) and m + 1 functions Pi ∈

L2(0, T ) find u ∈ L2(0, T ; Ṽ ) ∩ L∞(0, T ;L2(Ω)) and p ∈ L2(0, T ;L2(Ω)) such
that:





(∂u
∂t
, v
)

+ (∇× u,∇× v) + ((∇× u) × u, v) + b(p, v) =

= (f , v) −
m∑

i=0

Pi

∫

Γi

v · n dγ,

b(q,u) = 0

for all v ∈ Ṽ and q ∈ L2(Ω) and with the initial condition u|t=0 = u0.

In this case the boundary conditions implicitely assumed are:

−
(
pn+

1

2
|u|2n

)∣∣∣
Γi

= −Pin, i = 0, . . . , m

Remark 2 If a mean pressure condition (1.11) or a normal stress condition (1.4)
is imposed on at least an artificial section Γi 6= Γ0, the constraint on the number
of surfaces on which it is possible to prescribe a flow rate condition has not to be
enforced anymore. In fact, condition (1.12) is satisfied for any arbitrary chioice
of the flow rate Q0.

24



1.4 Summary

Let us give a short summary of the work. In Chapter 2 we consider the flow rate
problem, extending to the unsteady-non linear case the augmented approach
proposed in [14] (Section 2.2). We analyse the proposed problem, giving a well-
posedness analysis and some a priori estimates (Section 2.3). Moreover, thanks to
the formulation of this problem we prove a result estimating the error introduced
in the numerical solution by prescribing an arbitrary velocity profile, rather than
the flux (Section 2.4). Then we introduce three algorithms for the numerical
resolution (Section 2.5) and we show several numerical results for their validation
(Section 2.6).

In Chapter 3, we review the results concerning some bioengineering appli-
cations obtained with the proposed strategies. Firstly we give some basic facts
about haemodynamics, introducing the mathematical modeling of blood flow
(Section 3.1.2). Then, we focus on a first application of these studies. In partic-
ular, the right prescription of a flow rate boundary condition allows to collect a
set of meaningful numerical results, linking the shape of the computed velocity
profile and the pulsatility. In this way it was possible to introduce in current
clinical practice an improvement in the estimation of the flow rate measure with
a Doppler velocimetry technique, otherwise not possible if a selected velocity
profile is prescribed (Section 3.2). Moreover, we apply the strategies proposed in
Chapter 2 for the resolution of the flow rate problem in a geometrical multiscale
modelization of the cardiovascular system (Section 3.3) and to a more sophis-
ticated description of the blood flow, including the vessel compliance (Section
3.4).

In Chapter 4, we present a “dual” approach based on the control theory,
that can be applied to the mean pressure problem as well. We propose different
algorithms and we show some numerical results for the validation of the proposed
strategies.
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Chapter 2

Augmented Formulation of the
Flow Rate Problem

2.1 Introduction

In this chapter we limit our attention to the flow rate problem. As pointed out
in Section 1.3.1, two strategies have been actually used in the engineering and
mathematical comunities in order to fill the gap introduced by imposing a flow
rate boundary condition. Nevertheless, both of them are unsatisfactory. In-
fact, the prescription a priori of the velocity profile (practical approach) has the
drawback that the numerical solution strongly depends on the arbitrary chosen
profile. On the other hand, the variational formulation-based approach, has the
drawback that in order to obtain a numerical solution we need a non standard
finite-dimensional subspace, which might not be easy to construct. As already
pointed out, these difficulties have been overcame thanks to the augmented for-
mulation of the flow rate problem, proposed firstly for the steady-Stokes case in
[14].

Here, we extend this formulation to the unsteady-non linear case. In partic-
ular, the outline of this chapter is as follows. In Section 2.2.1 we derive firstly
the augmented weak formulation for the unsteady Oseen problem (i.e. the ap-
proximation of the Navier-Stokes problem with an assigned convective field) by
the constrained minimization of a suitable functional. Then we extend this for-
mulation to the non-linear Navier-Stokes case. Moreover, we point out that the
specific boundary problem obtained is related also to the formulation of the vis-
cous term. This issue is discussed in Section 2.2.2. In Section 2.2.3 we extend
the proposed approach to different defective boundary informations. In Section
2.3 we show the well posedness of the augmented problems and we give some a
priori estimates of the solution. In Section 2.4 we present an analysis error of
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the practical approach shown in Section 1.3.1. In Section 2.5 we propose three
algorithms for the numerical solution of the augmented problem. In particular,
we refer to algorithms based on the splitting of the augmented problem into the
computation of velocity and pressure on one side and of the Lagrange multipliers
on the other one. Finally, in Section 2.6 we show the numerical results obtained
with these three techniques.

2.2 Derivation of the weak formulations

2.2.1 The unsteady Oseen and Navier-Stokes case

Let us consider the domain Ω ⊂ R
d, d = 2, 3, represented in Figure 2.1 and the

Γ3

Γ1

Γ2

Γ4

Ω Γ0

Γw

Figure 2.1: Domain Ω of interest in the flow rate problem. In this case we have
m = 4.

following unsteady Oseen problem, where the viscous term is rappresented by the
Laplace operator:





∂u

∂t
− µ4u+ (β · ∇)u+ ∇p = f , (t,x) ∈ YT

∇ · u = 0, (t,x) ∈ YT

u|t=0 = u0(x), x ∈ Ω

(2.1)

together with the boundary conditions:





u|Γw = 0, t ∈ (0, T ]
(pn− µ∇u n)|Γ0 = 0, t ∈ (0, T ]∫

Γi

u · n dγ = Qi, i = 1, 2, . . . , m, t ∈ (0, T ].
(2.2)
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Let us notice that we impose the fluxes on all the artificial sections apart from
Γ0. Let us consider the following functional:

F (v) =
(∂v
∂t
, v
)

+
1

2
aL(v, v) +

1

2
((β · ∇)v, v) − (f , v). (2.3)

By minimizing this functional in the space V ∗ given by (1.13), we obtain a
variational formulation of problem (2.1) with the following boundary conditions:




u|Γw = 0, t ∈ (0, T ]
(pn− µ∇u n)|Γ0 = 0, t ∈ (0, T ]
(pn− µ∇u n)|Γi

= 0, i = 1, . . . , m, t ∈ (0, T ]
(2.4)

This corresponds to a free minimization of the functional (2.3). On the other
hand, if we want take into account the supplementary informations given by
the flow rate boundary conditions (2.2)3, we can think to minimize the previous
functional with the constraint given by these conditions. With this aim, let us
introduce the following definition:

< φi, v >:=

∫

Γi

v ·n dγ, ∀i = 1, . . . , m, (2.5)

where φi ∈ V ′, i = 1, . . . , m and < ·, · > denotes the duality between V ′ and V .
With the previous definition we can formulate the flow rate condition in terms
of a continous and linear functional. In particular, let us consider the following
constrained minimization problem:

Problem 8 Find u ∈ V ∗ such that
{

min{w∈V ∗} F (w)
< φj,w >= Qj, j = 1, . . . , m.

In order to solve this problem we resort to a Lagrange multipliers approach, i.e.
we minimize the Lagrangian functional obtained by adding to the functional F
the constraints (2.2)3 multiplied by the Lagrange multipliers (see [55]). In this
way, the Lagrangian functional associated to Problem 8 becomes:

L(w, ξ1, . . . , ξn) =
1

2

(∂w
∂t

,w
)

+
1

2
aL(w,w) +

1

2
((β · ∇)w,w)+

−(f ,w) +

m∑

j=1

ξj(< φj,w > −Qj),

As usual for constrained minimization problems, we can resort to a saddle point
formulation (see [55]):
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Problem 9 Find u ∈ V ∗ and λ1, . . . , λn ∈ R such that, for each t:

L(u, λ1, . . . , λm) = min
{w∈V ∗}

max
{ξ1,...,ξm∈R}

{L(w, ξ1, . . . , ξm)},

where λj are the Lagrange multipliers associated to constraints (2.2)3. Let us
consider the function Ψ obtained evaluating L in (u+εv, λj+αjηj, j = 1, . . . , m),
with v and ηj the variations (costant in time) from the solution (u, λi):

Ψ(ε, α1, . . . , αm) = L(u+ εv, λ1 + α1η1, . . . , λn + αnηm).

Differentiating with the respect to ε, we obtain:

dΨ(ε, α1, . . . , αm)

dε
=
(∂u
∂t
, v
)

+ε
(∂v
∂t
, v
)

+aL(u, v)+εaL(v, v)+((β ·∇)u, v)+

+ε((β · ∇)v, v) − (f , v) +
m∑

j=1

λj < φj, v > +
m∑

j=1

αjηj < φj, v >

and with the respect to αj:

dΨ(ε, α1, . . . , αm)

dαj
= ηj(< φj,u > −Qj) + ηjε < φj, v > .

By forcing 



dΨ(0, 0, . . . , 0)

dε
= 0,

dΨ(0, 0, . . . , 0)

dαj
= 0, j = 1, . . . , m,

we obtain:





(∂u
∂t
, v
)

+ aL(u, v) + ((β · ∇)u, v) +
m∑

j=1

λj < φj, v >= (f , v), ∀v ∈ V ∗

ηj(< φj,u > −Qj) = 0, for j = 1, . . . , m, ∀ηj ∈ R.

By proceeding in a similar way, with an explicit treatment of the incompressibility
constraint, we obtain the following augmented variational formulation for the
problem given by (2.1) and (2.2):
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Problem 10 Given u0 ∈ V ∗, f(t) ∈ L2(0, T ;L2(Ω)), β ∈ L∞(0, T ;L∞(Ω))
and Q(t) ∈ (C0([0, T ]))m (with

∫
Γj
u0 · n dγ = Qj(0)), find u(t) ∈ L2(0, T ;V ) ∩

L∞(0, T ;L2(Ω)), p ∈ L2(0, T ;L2(Ω)) and λ ∈ (L2(0, T ))m such that





(∂u
∂t
, v
)

+ aL(u, v) + ((β · ∇)u, v) + b(p, v) +

m∑

j=1

λj

∫

Γj

v · n dγ =

= (f , v), (t,x) ∈ YT

b(q,u) = 0, (t,x) ∈ YT

u|t=0 = u0, x ∈ Ω∫

Γi

u ·n dγ = Qi ∀i = 1, . . . , m, t ∈ (0, T ]

(2.6)

for all v ∈ V and q ∈ L2(Ω).

For the Navier-Stokes case, we can not derive an augmented formulation
through a constrained minimization problem. Nevertheless, we will consider such
a formulation also in this case, by simply setting β = u in Problem 10.

Problem 11 Given u0 ∈ V ∗, f(t) ∈ L2(0, T ;L2(Ω)) and Q(t) ∈ (C0([0, T ]))m

(with
∫
Γj
u0 · n dγ = Qj(0)), find u(t) ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)), p ∈

L2(0, T ;L2(Ω)) and λ ∈ (L2(0, T ))m such that





(∂u
∂t
, v
)

+ aL(u, v) + ((u · ∇)u, v) + b(p, v) +

m∑

j=1

λj

∫

Γj

v · n dγ =

= (f , v), (t,x) ∈ YT

b(q,u) = 0, (t,x) ∈ YT

u|t=0 = u0, x ∈ Ω∫

Γi

u · n dγ = Qi ∀i = 1, . . . , m, t ∈ (0, T ]

for all v ∈ V and q ∈ L2(Ω).

The choice of the space L2(0, T ) for the Lagrange multipliers λj will be clear from
the a priori estimates in Section 2.3.2.

Problem 11 extends the augmented variational formulation, proposed in [14]
for the steady-Stokes problem, to the unsteady non-linear Navier-Stokes case. It
is easy to check that the result in Proposition 1, Chapter 1, can be extended to
Problem 10 and 11. Therefore, also in the general case, equivalence (1.21) holds,
i.e the Lagrange multipliers λi have the physical meaning of normal stress on the
artificial sections. Let us notice that among all the possible Neumann boundary
conditions fitting the desired flow rate, the augmented formulation prescribes the
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constant one. Moreover, we point out that Problems 10 and 11 share the good
property, in view of the numerical simulations, of requiring the discretization of
a ”standard” space V .

2.2.2 Different formulations for the viscous term

In the previous formulation, the boundary conditions implicitely forced by the
minimization approach are:

{
(−p + µ(∇u n) ·n)|Γi

= λi, i = 1, . . . , m
(µ(∇u n) · τ j)|Γi

= 0, i = 1, . . . , m, j = 1, d− 1,

where τ j, j = 1, d − 1 are the unit vectors such that τ j · n = 0 and, if d = 3,
τ 1 · τ 2 = 0, and where λi are the Lagrange multipliers. These conditions are
strictly related to the formulation of the functional to be minimized. In fact,
it is possible to refer to different functionals, associated to different boundary
conditions. For example, let us consider the following Oseen problem, with a
”complete” treatment of the viscous term:





∂u

∂t
−∇ · µ(∇u+ (∇u)t) + (β · ∇)u+ ∇p = f , (t,x) ∈ YT

∇ · u = 0, (t,x) ∈ YT

u|t=0 = u0(x), x ∈ Ω

(2.7)

together with (2.2)1, (2.2)3 and the following boundary condition:

(pn− µ(∇u+ (∇u)t)n)|Γ0 = 0, t ∈ (0, T ]. (2.8)

In order to find an augmented formulation related to problem given by (2.7),
(2.2)1, (2.2)3 and (2.8), it is possible to minimize the functional

FC(v) =
(∂v
∂t
, v
)

+
1

2
aC(v, v) +

1

2
((β · ∇)v, v) − (f , v), (2.9)

with the constraint given by (2.2)3. In this case we obtain a formulation similar
to Problem 10 with aC(·, ·) instead of aL(·, ·). The extension to the Navier-Stokes
case can be considered as well. In this case the boundary conditions implicitely
forced by the minimization approach are:

{
(−p + µ(∇u+ (∇u)t)n · n)|Γi

= λi, i = 1, . . . , m
(µ(∇u+ (∇u)t)n · τ j)|Γi

= 0, i = 1, . . . , m, j = 1, d− 1.

and therefore the Lagrange multipliers λi have a different physical meaning on
the artificial sections.
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Alternatively, refferring to the vector identity (1.23) and to formulation in
Problem 5, we can consider the following functional:

F̃ (v) =
(∂v
∂t
, v
)

+
1

2
µ(∇× v,∇× v) +

1

2
((β · ∇)v, v) − (f , v). (2.10)

Thanks to (1.23), it is possible to check that, by minimizing (2.10) in the space

Ṽ
∗

(with Ṽ given by (1.24)), we obtain a variational formulation of problem
(2.1) with the following boundary conditions:





u|Γw = 0, t ∈ (0, T ],
p|Γ0 = 0, t ∈ (0, T ],
p|Γi

= 0, i = 1, . . . , m, t ∈ (0, T ],
(u× n)|Γ0 = 0, t ∈ (0, T ],
(u× n)|Γi

= 0, i = 1, . . . , m, t ∈ (0, T ].

(2.11)

This is the result of the unconstrained minimization. On the other hand, in
order to take into account the supplementary informations given by the flow
rate boundary conditions (2.2)3, we can minimize functional (2.10) with these
constraints, obtaining the following minimization problem:

Problem 12 Find u ∈ Ṽ ∗
such that

{
min

{w∈ fV ∗}
F̃ (w)

< φj,w >= Qj, j = 1, . . . , m

Building the Lagrangian functional related to Problem 12 and differenziating
as done for Problem 8, we obtain the following augmented formulation for the
problem given by (2.1), (2.11)1, (2.11)2, (2.11)4, (2.11)5 and (2.2)3 (see [70]):

Problem 13 Given u0 ∈ Ṽ
∗
, f(t) ∈ L2(0, T ;L2(Ω)), β ∈ L∞(0, T ;L∞(Ω))

and Q(t) ∈ (C0([0, T ]))m (with
∫
Γj
u0 · n dγ = Qj(0)), find u(t) ∈ L2(0, T ; Ṽ ) ∩

L∞(0, T ;L2(Ω)), p ∈ L2(0, T ;L2(Ω)) and λ ∈ (L2(0, T ))m such that




(∂u
∂t
, v
)

+ µ(∇× u,∇× v) + ((β · ∇)u, v) + b(p, v)+

+

m∑

j=1

λj

∫

Γj

v · n dγ = (f , v), (t,x) ∈ YT

b(q,u) = 0, (t,x) ∈ YT

u|t=0 = u0, x ∈ Ω∫

Γi

u · n dγ = Qi ∀i = 1, . . . , m, t ∈ (0, T ]

(2.12)

for all v ∈ Ṽ and q ∈ L2(Ω).
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We have the following result, highlighting the physical role of the Lagrange mul-
tipliers (see [70]):

Proposition 2 The Lagrange multipliers λi related to Problem 13 correspond to
the pressure on the artificial section Γi, i.e.

−p|Γi
= λi, i = 1, . . . , m (2.13)

Proof

Let us consider v ∈ D(Ω) = C∞
0 (Ω) in the first of (2.12). By applying the Green

formula, we obtain:

(∂u
∂t
, v
)
− µ(4u, v) + ((β · ∇)u, v) + (∇p, v) = (f , v), ∀v ∈ D(Ω)

and therefore we recover the momentum equation (2.1)1. Then, taking v ∈ Ṽ ,
with the same procedure we obtain:

m∑

j=1

λj

∫

Γj

v ·n dγ +

∫

∂Ω

pv · n dγ = 0, ∀v ∈ Ṽ ,

i.e. conditions (2.13) and p|Γ0 = 0. �

In this case the Lagrange multipliers play the role of (constant) pressure on the
artificial sections. Therefore, this could be of some interest, for instance, in the
multiscale modelling of the cardiovascular system (see Section 3.3). Also in this
case, we can extend straightforwardly the previous formulation to the non-linear
case, by following the same approach presented previously. We do not explicitely
repeat this derivation for the sake of brevity.

All these examples highlight the relationship between the treatment of the
viscous term and the physical meaning of the Lagrange multipliers.

2.2.3 Different defective boundary problems

It is worth pointing out that the approach previously proposed can be adapted for
including any kind of defective boundary conditions. For instance, let us suppose
to have also data on the tangential component of the velocity

∫

Γi

u · τ j dγ = rij(t), i = 1, . . . , m, j = 1, d− 1 (2.14)
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Let us introduce the functionals

< ψij, v >:=

∫

Γi

v · τ j dγ, ∀i = 1, . . . , m, j = 1, d− 1,

where ψij ∈ V ′. Therefore, problem given by (2.1), (2.2) and (2.14) can be
formulated as a constrained minimization problem:

Problem 14 Find u ∈ V ∗ such that




min{w∈V ∗} F (w)
< φi,w >= Qi, i = 1, . . . , m,
< ψij,w >= rij, i = 1, . . . , m, j = 1, d− 1.

It is easy to check that this problem leads to the following

Problem 15 Given u0 ∈ V ∗, f(t) ∈ L2(0, T ;L2(Ω)), Q(t) ∈ (C0([0, T ]))m

(with
∫
Γj
u0 · n dγ = Qj(0)), r(t) ∈ (C0([0, T ]))m×(d−1) (with

∫
Γj
u0 · τ i dγ =

rji(0)) and β ∈ L∞(0, T ;L∞(Ω)), find u(t) ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)),
p ∈ L2(0, T ;L2(Ω)), λ ∈ (L2(0, T ))m and η ∈ (L2(0, T ))m×(d−1) such that





(∂u
∂t
, v
)

+ aL(u, v) + ((β · ∇)u, v) + b(p, v) +

m∑

i=1

λi

∫

Γi

v ·n dγ+

+

d−1∑

j=1

m∑

i=1

ηij

∫

Γi

v · τ j dγ = (f , v), (t,x) ∈ YT

b(q,u) = 0, (t,x) ∈ YT

u|t=0 = u0, x ∈ Ω∫

Γi

u · n dγ = Qi ∀i = 1, . . . , m, t ∈ (0, T ]
∫

Γi

u · τ j dγ = rij, i = 1, . . .m, j = 1, d− 1, t ∈ (0, T ]

(2.15)

for all v ∈ V and q ∈ L2(Ω).

Here ηij are the Lagrange multipliers related to the constraints (2.14). It is easy
to check that they play the role of constant tangential stress. In fact, let us
consider v ∈ D(Ω) in the first of (2.15). By applying the Green formula, we
recover the momentum equation (2.1)1. Then, taking v ∈ V , with the same
procedure we obtain:

m∑

i=1

λi

∫

Γi

v ·n dγ+
d−1∑

j=1

m∑

i=1

ηij

∫

Γi

v ·τ j dγ+

∫

∂Ω

(
pn−∇u n)·v dγ = 0, ∀v ∈ V .
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By multipling the latter equality with n, we obtain

(−p + µ(∇u n) · n)|Γi
= λi, i = 1, . . . , m.

On the other hand, by multiplying with the tangential unit vector τ j, we obtain

(µ(∇u n) · τ j)|Γi
= ηijτ j, i = 1, . . . , m.

2.3 Analysis of the augmented problems

In this Section we present some well-posedness results related to the augmented
problems. In particular, in Section 2.3.1 we recall the well posedness analysis of
the steady-Stokes augmented problem. This is obtained by a effects superimpo-
sition principle based on the steadiness and the linearity of the problem and it
is taken from [14]. In Section 2.3.2, we are going to extend these results to the
general augmented problem (Problem 11). We point out that in this case it is not
possible to resort to a effects superimposition principle. Therefore, we resorted
to an abstract result about the augmented problems, based on the fulfilling of an
inf-sup condition. Moreover, we show some a priori estimates.

From now on in this chapter, for the sake of simplicity, all the problems
presented are considered with the ”laplacian” treatment of the viscous term and
with the bilinear form aL(·, ·). Therefore, since there will be no more ambiguity,
we pose

a(·, ·) = aL(·, ·).

Nevertheless, we point out that the results and the algorithms presented from
now on could be extended straightforwardly to the other treatments of the viscous
terms and therefore to the other formulations of the augmented problems.

2.3.1 Well posedness of the steady-Stokes augmented prob-

lem

The well posedness analysis of Problem 3, has been carried out in [14]. In par-
ticular, the following result holds:

Theorem 5 Problem 3 admits an unique solution {u, p,λ}.

Let us give a trace of the proof. In particular, let us consider the following
problems:
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1) Find wj ∈ V and p ∈ L2(Ω) such that





a(wj, v) + b(πj, v) = −
∫

Γj

v · n dγ, x ∈ Ω, j = 1, . . . , m,

b(q,wj) = 0, x ∈ Ω

for all v ∈ V and q ∈ L2(Ω).

2) Find ũ ∈ V and p̃ ∈ L2(Ω) such that

{
a(ũ, v) + b(p̃, v) = (f , v), x ∈ Ω,
b(q, ũ) = 0, x ∈ Ω

for all v ∈ V and q ∈ L2(Ω).

3) Solve the linear system

m∑

j=1

λj

∫

Γi

wj · ndγ = Qi −
∫

Γi

ũ ·ndγ,

for the unknowns λi, with matrix whose elements are

Bij =

∫

Γi

wj · ndγ. (2.16)

4) Build functions u and p such that:





u = ũ+
m∑

j=1

λjwj

p = p̃+
m∑

j=1

λjπj.

(2.17)

The following result holds (see [14]):

Proposition 3 Matrix B is not singular.

Therefore, problems at steps 1), 2) and 3) are well-posed. It is easy to check that
functions u and p given by (2.17) are the solutions of Problem 3. Let us notice
that this technique relies on the linearity and on the steadiness of the problem
(in this case the Lagrangian multipliers are constant). Therefore, it can not be
extended to a more general case.
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2.3.2 Well posedness of the generic augmented problem

The present analysis refers to the unsteady non linear Navier-Stokes augmented
problem, yielding a local-in-time well posedness result under suitable regularity
hypotheses. Let us denote:
− X and Y two Hilbert spaces,
− d(·, ·) a continuous bilinear form defined on X × Y,
− c(·, ·, ·) a continuous trilinear form defined on X × X × X continuous with
respect to the last two arguments.
Let us consider the following general abstract problem:

Problem 16 Given l ∈ X ′, find (z, γ) ∈ X × Y such that

{
c(z; z, v) + d(v, γ) =< l, v >
d(z, µ) = 0

for all v ∈ X and µ ∈ Y .

Let
W = {w ∈ X : d(w, µ) = 0, ∀µ ∈ Y }

be the kernel of the bilinear form d(·, ·). We can associate Problem 16 with the
following ”reduced” problem:

Problem 17 Given l ∈ X ′, find z ∈ W such that

c(z; z, v) =< l, v >

for all v ∈ W .

It is immediate to see that if (z, γ) is a solution of Problem 16, then z is a solution
of Problem 17. The converse is true under the following condition (see [7, 24]):

Theorem 6 If the bilinear form d(·, ·) fulfills the following inf-sup condition:

∃β > 0 : ∀γ ∈ Y, ∃v ∈ X : d(v, γ) ≥ β‖γ‖Y ‖v‖X , (2.18)

then, for each solution z ∈ X of Problem 17, there exists γ ∈ Y such that the
couple (z, γ) is a solution of Problem 16.

We can now prove the following result, that has been published in [70]:

Proposition 4 For sufficiently smooth data Qi with
∑

i |Qi| and ‖u0‖V small
enough, Problem 11 is locally well-posed, i.e. there exists a time T ∗ > 0 such that
a solution (u, p, {λi}i=1,...,m) exists in [0, T ∗].
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Proof

Assume that Qi = 0 for each i. In this case, observe that Problem 2, Section
1 and the augmented Problem 11 play the same role of Problems 17 and 16 in
Theorem 6, respectively. In the general case of prescribed non null fluxes, we
refer to the velocity field

ũ = u−
m∑

i=1

Qibi,

with bi given by (1.14) (lifting). If ν ∈ R
m and w ∈ V , we can introduce the

bilinear form

e(w,ν) =
m∑

i=1

νi

∫

Γi

w · n dγ.

Theorem 1, Section 1, states that a solution of the reduced problem exists in
[0, T ∗]. In order to prove that also the augmented problem is (locally) well-posed,
we need to prove that the inf-sup condition (2.18) is fulfilled for the bilinear form
e(w,ν). We fix the time and for any m-dimensional vector ν we set

‖ν‖ = max
j=1,...,m

|νj|.

Let us denote by j (1 ≤ j ≤ m ) the index for which the maximum is attained
(notice that j depends on time). Setting

v = sign(νj)(bj),

we obtain:

e(v,ν) =

m∑

j=1

νj

∫

Γj

sign(νj)bj · n dγ = ‖ν‖ ≥ ‖ν‖ ‖v‖V

maxj ‖bj‖V

.

The inf-sup condition is therefore fulfilled with

β =
1

maxj ‖bj‖V

,

(which is time independent) and the thesis is therefore proven. �

Let us prove some a priori estimates. Considering Problem 10, for the sake of
simplicity with m = 1 and Q1 = 0, let us set v = u in the momentum equation
and let us integrate in time. We obtain, exploiting that

∫
Γ1
u · n dγ = 0, the

classical regularity results (see [67]):
{
u ∈ L2(0, T ∗;H2(Ω))
u′ ∈ L2(0, T ∗;L2(Ω))

(2.19)
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From the inf-sup conditions we obtain (considering free-divergence subspaces):

|λ1(t)| ≤
1

β
sup
v∈V

λ1

∫
Γ1
v · n dγ

‖v‖V

=

=
1

β
sup
v∈V

(f , v) −
(∂u
∂t
, v
)
− aL(u, v) − ((β · ∇)u, v)

‖v‖V

≤

≤ 1

β
sup
v∈V

‖f‖ ‖v‖ +
∥∥∥∂u
∂t

∥∥∥ ‖v‖ + µ‖u‖V ‖v‖V + ‖β‖L∞(Ω)‖u‖V ‖v‖
‖v‖V

Exploiting the Poincaré inequality (with constant CP ), we obtain:

|λ1(t)| ≤
1

β

(
CP‖f‖ + CP

∥∥∥∂u
∂t

∥∥∥ + µ‖u‖V + CP‖β‖L∞(Ω)‖u‖V

)
.

From the regolarity results (2.19) we obtain that all the terms at the right hand
side are in L2(0, T ∗) and therefore we conclude that λ1 ∈ L2(0, T ∗).

Both the well-posedness analysis and the a priori estimates could be easily
extended to Problem 13 and to its non-linear counterpart.

2.4 Error analysis in imposing Dirichlet bound-

ary conditions

Exploiting the augmented formulations proposed in Section 2.2.1, we prove a
result for estimating the error in imposing an arbitrary velocity profile instead
of the fluxes (practical approach, see Section 1.3.1). The idea is to reformulate
also this problem in an augmented way and to give an estimate for the difference
between the two problems. This result is reported in [71].

Namely, we want to quantify the error done by imposing the condition

u|Γi
= g, i = 1, . . . , m,

with an arbitrary function g ∈ H1/2(∂Ω) such that
∫

Γi

g · n dγ = Qi, i = 1, . . . , m,

instead of the flow rate boundary condition
∫

Γi

u · n dγ = Qi.
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Actually, we will develop our analysis in divergence free subspaces, so that we
will not deal with the pressure field. For the sake of simplicity, we will refer to
the case m = 1 and to the Stokes problem. Let us denote by Γ the part of the
boundary where the flow rate condition is prescribed. Moreover, let us denote
Γ̂ = Γw ∪ Γ. In the divergence free subspace, the augmented formulation for this
problem reads:

Find u ∈ L2(0, T ;V ∗) ∩ L∞(0, T ;L2(Ω)∗) and λ ∈ L2(0, T ) such that for all
v ∈ V ∗: 




(
∂u

∂t
, v

)
+ a (u, v) + λ

∫

Γ

v · ndγ = (f , v)

∫

Γ

u · ndγ = Q

with u|t=0 = u0. Let us reformulate the previous problem in an homogeneous
form through a lifting procedure. Let us pose

u0 = u− g̃,

with g̃ ∈ H1(Ω) such that ∫

Γ

g̃ · n dγ = Q.

In particular, let us choice g̃ such that

g̃|Γ = g.

In this way, we obtain the following problem:
Find u0 ∈ L2(0, T ;V ∗) ∩ L∞(0, T ;L2(Ω)∗) and λ ∈ L2(0, T ) such that for all

v ∈ V ∗:




(
∂u0

∂t
, v

)
+ a (u0, v) + λ

∫

Γ

v · ndγ = (f , v) −
(
∂ g̃

∂t
, v

)
− a (g̃, v)

∫

Γ

u0 · ndγ = 0

(2.20)

with u0|t=0 = u0 − g̃|t=0.
Correspondingly, the problem obtained by prescribing the Dirichlet boundary

condition
u|Γ = g

can be formulated, choosing g̃ as lifting function, as follow:
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Find û0 ∈ L2(0, T ;H1
Γ̂
(Ω)∗)∩L∞(0, T,L2(Ω)∗) such that for all v ∈H1

Γ̂
(Ω)∗:

(
∂û0

∂t
, v

)
+ a

(
û0, v

)
= (f , v) −

(
∂ g̃

∂t
, v

)
− a (g̃, v) (2.21)

with the initial condition û0|t=0 = u0 − g̃|t=0.
In order to compare the two solutions, we reformulate the latter problem in

a different way.

Proposition 5 Problem (2.21) is equivalent to the following “augmented” prob-
lem: find û0 ∈ L2(0, T ;V ∗) ∩ L∞(0, T ;L2(Ω)∗) and ζ ∈ L2(0, T ;H−1/2(Γ)) such
that for all v ∈ V ∗ and χ ∈H−1/2(Γ):




(
∂û0

∂t
, v

)
+ a

(
û0, v

)
+

∫

Γ

ζ · vdγ = (f , v) −
(
∂ g̃

∂t
, v

)
− a (g̃, v)

∫

Γ

χ · û0dγ = 0

(2.22)

with û0|t=0 = u0 − g̃|t=0.

In the previous proposition the terms

∫

Γ

χ · v dγ has to be intended as duality

between H−1/2(Γ) and H1/2(Γ) in the general case.

Proof

The implication that the solution û0 of (2.22) solves also (2.21) is trivial, since
it is enough to select in (2.22) the test functions belonging to H1

Γ̂
(Ω)∗ ⊂ V ∗.

The opposite implication can be proven, referring to [7, 24] and to Theorem 6,
by showing that the following inequality holds: there exists a β > 0 such that,
for each χ ∈H−1/2(Γ), there exists a vector v such that

∫

Γ

χ · v dγ ≥ β||χ||H−1/2(Γ)||v||V . (2.23)

To this aim, let us introduce the definition of norm in H−1/2(Γ):

‖χ‖H−1/2(Γ) = sup
‖w‖

H1/2(Γ)
=1

∫

Γ

χ · v dγ

where < ·, · > denotes the duality between H−1/2(Γ) andH1/2(Γ). Let us choose
w̃ with ‖w̃‖H1/2(Γ) = 1, such that

1

2
‖χ‖H−1/2(Γ) ≤

∫

Γ

χ · v dγ.
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From the definition of norm in H1/2(Γ):

‖w̃‖H1/2(Γ) = inf
z|Γ= ew

‖z‖V

we can choose v with v|Γ = w̃ such that

‖v‖V ≤ 2‖w̃‖H1/2(Γ).

Therefore, we obtain
∫

Γ

χ · v dγ ≥ 1

2
‖χ‖H−1/2(Γ) =

1

2
‖χ‖H−1/2(Γ)‖w̃‖H1/2(Γ) ≥

1

4
‖χ‖H−1/2(Γ)‖v‖V

i.e. (2.23) with β =
1

4
. �

In the sequel Ck(t) (k = 1, 2, . . .) will denote a generic function of time (or possibly
a constant) dependent on the data and independent of the space coordinate.
Observe that as a consequence of Proposition 5, by standard arguments we have
that for t > 0

t∫

0

||ζ||2H−1/2(Γ)ds ≤ C1.

The error analysis can be now carried out by considering the field δ = u0 − û0.
By subtracting (2.20) and (2.22) we have that for all v ∈ V ∗





(
∂δ

∂t
, v

)
+ a (δ, v) +

∫

Γ

(λn− ζ) · vdγ = 0

∫

Γ

δ · ndγ = 0

(2.24)

with δ|t=0 = 0. We prove the following result.

Theorem 7 Let Ω′ ⊂⊂ Ω be such that dist(Ω′,Γ) ≥ d. If the domain Ω is
smooth enough, the following inequalities hold for t > 0





‖δ(t)‖2 + α

t∫

0

||δ(s)||2V ds ≤ C2

t∫

0

||ζ(s)||2H−1/2(Γ)ds,

t∫

0

||δ(s)||2
H

1(Ω′)ds ≤ C(t, ζ,Γ)e−d.

(2.25)
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Proof

Let us set in (2.24) v = δ. Since λ is constant in space and
∫
Γ
δ · n dγ = 0, we

obtain (
∂δ

∂t
, δ

)
+ a (δ, δ) −

∫

Γ

ζ · δdγ = 0. (2.26)

From the coercivity of the bilinear form a (·, ·), we have

1

2

d

dt
‖δ‖2 + α||δ||2V ≤

∣∣∣
∫

Γ

ζ · δdγ
∣∣∣ ≤ ‖ζ‖H−1/2(Γ)‖δ‖H1/2(Γ). (2.27)

From this inequality we obtain the first of (2.25) by integrating in time and
applying the Young and the trace inequalities in a standard way.

Let us prove the second (2.25). The basic approach is similar to the one
followed by Rannacher in the analysis of Chorin-Temam method for Navier-Stokes
equations, presented in [58]. Let us denote by d(x) the distance of the generic

point of the domain Ω from Γ and set σ(x) ≡ min(ed(x), ed). Since for x ∈ Ω′ we

have σ(x) = ed and therefore ∇(
√
σ)|Ω′ = 0, we obtain:

µ

t∫

0

∫

Ω′

∇δ : ∇δdωds = e−dµ

t∫

0

∫

Ω′

σ∇δ : ∇δdωds =

= e−dµ

t∫

0

∫

Ω′

∇(δ
√
σ) : ∇(δ

√
σ)dωds ≤

≤ e−dµ

t∫

0

∫

Ω

∇(δ
√
σ) : ∇(δ

√
σ)dωds ≤ e−dC3

t∫

0

||δ
√
σ||2V ds. (2.28)

Now, choose v = σδ in (2.24). Since on Γ we have that σ = 1, we obtain

λ

∫

Γ

σδ · n dγ = λ

∫

Γ

δ · n dγ = 0.

Consequently, we have:

1

2

d

dt
||δ

√
σ||2 + µ

∫

Ω

σ∇δ : ∇δdω = −µ
∫

Ω

δ · (∇δ∇σ)dω +

∫

Γ

ζ · δdγ, (2.29)
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If d is smooth enough, the following identities hold:





∇σ|Ω′ = 0
∇σ|Ω\Ω′ = σ∇d√
σ|Γ = 1

Exploiting this, we obtain from the Young inequality:

∣∣∣µ
∫

Ω

δ · (∇δ∇σ)dω
∣∣∣ ≤ µ||∇d||L∞(Ω)||δ

√
σ|| ||∇δ

√
σ|| ≤

≤ C4||δ
√
σ||2 + C5||∇δ

√
σ||2.

Consequently, observing that ∇(
√
σ)|Ω\Ω′ = 1/2

√
σ∇d, from (2.29) we obtain:

1

2

d

dt
||δ

√
σ||2 + µ

∫

Ω

σ∇δ : ∇δdω ≤ C4||δ
√
σ||2 + C5||∇δ

√
σ||2 +

∫

Γ

ζ · δ
√
σdγ ≤

≤ C4||δ
√
σ||2 + C5||∇δ

√
σ||2 + C6‖ζ‖2

H−1/2(Γ)
+ C7‖∇(δ

√
σ)‖2 ≤

≤ C4||δ
√
σ||2+C5||∇δ

√
σ||2+C6‖ζ‖2

H−1/2(Γ)
+C7‖∇δ

√
σ‖2+C7‖∇d‖L∞(Ω)‖δ

√
σ‖2

and then

1

2

d

dt
||δ

√
σ||2 + (µ− C5 − C7)‖∇δ

√
σ‖2 ≤ C8||δ

√
σ||2 + C6‖ζ‖2

H−1/2(Γ)
(2.30)

Choosing properly C5 and C6, by time integration of (2.30) and application of
the Gronwall Lemma, we obtain:

||δ
√
σ||2 ≤

t∫

0

||ζ||2H−1/2(Γ)ds e
C8t,

yielding
t∫

0

||δ
√
σ||2V ≤ C(ζ, |Γ|, t)

where C(ζ, |Γ|, t) is increasing with t and |Γ|. From (2.28) we finally obtain:

µ

t∫

0

∫

Ω′

∇δ : ∇δdωds ≤ e−dC3C(ζ, |Γ|, t) (2.31)
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yielding the thesis. �

The relevance of the previous result is that at each fixed instant the error in a
domain contained in Ω decreases exponentially with the distance from Γ. As
pointed out in Section 1.3.1, from the practical viewpoint this implies that the
domain of interest has to be extended yielding an increasing in computational
costs. However, different Reynolds numbers lead to different enlargement of the
domain, as it is evident by the fact that constant C in (2.31) grows up with Re. In
Section 2.5.5, we will see an approximate (and however fast) algorithm for solving
the flow rate problem that belongs to these categories of approximate strategies,
but yielding smaller errors than the ones obtained by choosing arbitrarily the
velocity profile.

2.5 Numerical solution of the

augmented problem

2.5.1 The discrete problem

We want now to investigate some numerical methods for the approximation of
the augmented problems. In the sequel, we refer to a finite element discretization
of the Oseen equations, featuring inf-sup compatible elements (see [55]). In par-
ticular, let us denote by V h and Qh the subspaces of V and L2(Ω) of dimension
Nu and Np and with basis functions denoted by ψj and ζk, respectively, such that

∃β > 0 : ∀ph ∈ Qh, ∃vh ∈ V h : b(ph, vh) ≥ β‖ph‖ ‖vh‖V . (2.32)

Moreover, let us denote with Ωh the numerical computational domain obtained
with a partition τh of Ω in elements Kj and let us set YT,h = (0, T ] × Ωh. The
Galerkin-approximate in space problem related to Problem 10, reads:

Problem 18 Given u0,h suitable approximation of the initial guess u0 and with
the same data of Problem 10, find uh(t) ∈ L2(0, T ;V h) ∩ L∞(0, T ;L2(Ω)), p ∈
L2(0, T ;Qh) and λh ∈ (L2(0, T ))m such that




(∂uh

∂t
, vh

)
+ a(uh, vh) + ((β · ∇)uh, vh) + b(ph, vh)+

+

m∑

j=1

λj,h

∫

Γj

vh · n dγ = (f , vh), (t,x) ∈ YT,h

b(qh,uh) = 0, (t,x) ∈ YT,h

uh|t=0 = u0,h, x ∈ Ω∫

Γi

uh · n dγ = Qi ∀i = 1, . . . , m, t ∈ (0, T ]

46



for all vh ∈ V h and qh ∈ Qh.

In order to discretize also with respect to the time variable, let us introduce
a partition of the time interval [0, T ] into subintervals. For the sake of simplicity,
we refer to a uniform subdivision with size ∆t. Among the other methods for
the time advancing, we consider a discretization of the time derivatives based
on the Backward Difference Formulas (BDF) (see [35]). Setting tn = n∆t, for
n = 0, 1, . . ., we have the following:

Problem 19 Given u0,h suitable approximation of the initial guess u0 and posing
fn = f(tn,x), βn = β(tn,x) and Qn

j = Qj(t
n), j = 1, . . . , m, find un+1

h (t) ∈ V h,

pn+1
h ∈ Qh and λn+1

h ∈ R
m such that, for each n:





α

∆t

(
un+1

h , vh

)
+ a(un+1

h , vh) + ((βn+1 · ∇)un+1
h , vh) + b(pn+1

h , vh)+

+

m∑

j=1

λn+1
j,h

∫

Γj

vh · n dγ = (fn+1, vh) +

r≤n∑

j=0

τj
∆t

(
u

n−j
h , vh

)
, x ∈ Ωh

b(qh,u
n+1
h ) = 0, x ∈ Ωh

u0
h = u0,h, x ∈ Ωh∫

Γi

un+1
h · n dγ = Qn+1

i ∀i = 1, . . . , m,

for all vh ∈ V h and qh ∈ Qh and where α and τj, j = 0, . . . , r, are the coefficients
of the time discretization.

The algebraic form of the augmented discrete problem is therefore given by:



K Bt Φt

B 0 0
Φ 0 0





Un+1

P n+1

Λn+1


 =



F̃

n+1

0
Qn+1


 (2.33)

where Un+1 and P n+1 are the vectors of the nodal values of the velocity and
of the pressure field respectively and Λn+1 is the vector of the approximated

Lagrange multipliers at time step n + 1, K = Kn+1 =
α

∆t
M + A + C sums up

the discretization of the time derivative (mass matrix M = [mij] = [(ψi,ψj)]), of
the viscous term (stiffness matrix A = [aij] = [a(ψi,ψj)]) and of the convective

one (matrix C = Cn+1 = [cij] = [((βn+1 · ∇)ψi,ψj)]. In all these three cases
we have i, j = 1, . . . , Nu. Finally, B = [bil] = [b(ζl,ψi)], for l = 1, . . . , Np and
i = 1, . . . , Nu, Φ = [φrj] = [

∫
Γr
ψj · n dγ], for r = 1, . . . , m and j = 1, . . . , Nu,

and F̃
n+1

= F n+1 +
∑r≤n

j=0

τj
∆t

MUn−j, with F = [Fi] = (f ,ψi). We have the

following result:
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Proposition 6 Under the same regularity assumptions of Proposition 4, Prob-
lem 18 is locally well-posed, i.e. there exists a time T ∗ > 0 such that a solution
(uh, ph, {λi,h}i=1,...,m) holds in [0, T ∗]. Moreover, Problem 19 admits a unique
solution if

∆t < min
{wh 6=0}

α|wt
hMwh|

|wt
hCwh|

. (2.34)

Proof

The well-posedness of Problem 18 is a consequence of Proposition 4 and of the
discrete inf-sup condition (2.32). Moreover, in order to prove the well posedness
of Problem 19, we prove that under condition (2.34), matrix K is positive definite,
i.e. that

wt
hKwh > 0, ∀wh 6= 0

Since A is positive definite (see [55]), we require that:

α

∆t
wt

hMwh +wt
hCwh > 0, ∀wh 6= 0

yielding the thesis. �

For the approximation of the augmented Navier-Stokes Problem 11, we consider,
if not differently specified, a semi-implicit discretization. In particular, we set

βn+1 = un
h

in Problem 19 and in (2.33).
In the sequel of this section we recall the numerical methods introduced for

the augmented steady-Stokes case in [14]. Then, we illustrate three algorithms
for the numerical resolution of Problems 18-19 (Section 2.5.3-2.5.5).

2.5.2 Numercal algorithms for the steady Stokes problem

In this section we present the numerical strategies proposed in [14] for the numer-
ical resolution of Problem 3, whose algebraic counterpart is (2.33) with K = A

and F̃ = F .

Reordering + algebraic splitting

The first two algorithms are based on the algebraic factorization of a general
system in the form: [

D Et

E 0

] [
X1

X2

]
=

[
G

0

]
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In particular, let us recall that this linear system can be solved exactly by the
following three step algorithm:

i) DX̃1 = G

ii) ED−1EtX2 = EX̃1

iii) X1 = X̃1 −D−1EtX2

where X̃1 is an intermediate unknown. In this way it is possible to split the
computation of the two unknowns X1 and X2. However, in order to obtain
reasonable computational costs, a suitable approximation of matrix D−1 (inexact
algebraic splitting) and a (block) preconditioning are often mandatory (see, for
example, for the Navier-Stokes case [53, 69]).

In [14] an application of this algebraic factorization to the augmented steady-
Stokes problem is proposed. In particular, system (2.33), with K = A and

F̃ = F , can be reordered in a standard form as

[
Â B̂t

B̂ 0

] [
Û

P

]
=

[
F̂

0

]
(2.35)

where

Â =

[
A Φt

Φ 0

]
B̂ =

[
B 0

]

Û =

[
U

Λ

]
F̂ =

[
F

Q

]

Alternatively, it can be reordered in a different manner as

[
A B̂t

B̂ 0

] [
U

P̂

]
=

[
F

Q̂

]
(2.36)

where

B̂ =

[
B
Φ

]
P̂ =

[
P

Λ

]
Q̂ =

[
0
Q

]
.

Applying the three steps of the algebraic factorizatiom to system (2.35) or to sys-
tem (2.36), we obtain an exact algebraic splitting of system (2.33) with K = A

and F̃ = F . Different inexact algebraic splitting are recovered starting from dif-
ferent approximations of matrix A−1 (see [14] for more details). We observe that
from the pratical point of view, in each case it is necessary to modify a standard
steady-Stokes solver by adding the lines of matrix Φ to A (as in reordering (2.35))
or to B (as in (2.36)).
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Schur complement + iterative solver

An alternative algorithm is based on using an iterative solution of a Schur com-
plement system. We rewrite (2.33), with K = A and F̃ = F , in the form

[
S Φ̃t

Φ̃ 0

] [
X

Λ

]
=

[
H

Q

]
(2.37)

where S =

[
A Bt

B 0

]
, Φ̃ =

[
Φ 0

]
, X =

[
U

P

]
and H =

[
F

0

]
. Since the

discrete inf-sup condition holds, S is nonsingular, so we can reduce system (2.37)
by eliminating X as:

Φ̃S−1Φ̃tΛ = Φ̃S−1H −Q (2.38)

where with S−1 we formally indicate the solution of a steady-Stokes problem.
Matrix R = Φ̃S−1Φ̃t ∈ R

m×m is the Schur complement associated to (2.37). The
following result holds (see [14]):

Proposition 7 The matrix R is symmetric positive definite.

Therefore, system (2.38) can be solved by an appropriate iterative method. For
example, since R is symmetric, it is possible to resort to the Coniugate Gradient
(CG) method. For each iteration a matrix-vector multiplication is required and
this implies the solution of a steady-Stokes problem with Neumann conditions on
the artificial sections Γi. In addition, two extra steady-Stokes problem have to be
solved to obtain the initial residual, required to start up the procedure, and the
final solution X . Therefore, if CG is adopted, the computational cost would be
in principle equal to the solution of m+ 2 steady-Stokes problems. Nevertheless,
in Section 2.5.3 we will show that the final differential problem required to obtain
the final solution can be skipped.

Continuous splitting algorithms

Finally, a completely different strategy presented in [14] is based on the well
posedness analysis carried out for Problem 3. In particular, referring to the
splitting recalled in Section 2.3.1, let us consider the following:

Algorithm 1

(See Figure 2.2)
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1) Solve for all i = 1, . . . , m





a (wi,h, vh) + b (πi,h, vh) = −
∫

Γi

vh · ndγ

b (qh,wi,h) = 0,

(2.39)

∀vh ∈ V h, ∀qh ∈ Qh.

2) Solve {
a (ũh, vh) + b (p̃h, vh) = (f , vh)
b (qh, ũh) = 0

(2.40)

∀vh ∈ V h, ∀qh ∈ Qh.

3) Solve the linear system

m∑

j=1

λj,h

∫

Γi

wj,h ·ndγ = Qi −
∫

Γi

ũh · ndγ (2.41)

in the unknowns λj,h.

4) Build the solution:





uh = ũh +

m∑

i=1

λi,h(t)wi,h,

ph = p̃h +
m∑

i=1

λi,h(t)πi,h,

(2.42)

�

We point out that all the differential problems in Algorithm 1 involve standard
(natural) boundary conditions on the sections where the flow rates are prescribed.
Therefore, if a steady-Stokes solver (possibly a commercial one) is available, it can
be effectively used within the framework depicted in Figure 2.2. This algorithm
has been investigated and tested in [72].

We observe that in the Schur complement+iterative solver and in the Contin-
uous Splitting schemes, the Lagrange multipliers computation is split from the
computation of the velocity-pressure pair. Furthermore, the steady-Stokes solu-
tion is cast in the framework of standard boundary value problems. In this way,
the Lagrange multipliers computation can be coded as an external subroutine
for a fluid solver that can be considered as a “black-box”. Here, extending these
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Solve (2.39)

Solve (2.40)

Solve linear system (2.41)

For all j = 1, . . . , m

Build solution with (2.42)

Figure 2.2: Algorithm 1 for the numerical resolution of the steady-Stokes aug-
mented problem.

strategies to the unsteady-non linear case, we basically refer to these two splitting
methods. In particular, in the next sections we introduce three algorithms for
the resolution of Problem 18 and of its non linear and steady variants. The first
two (Section 2.5.3 and 2.5.4) are taken from [70], while the third (Section 2.5.5)
is taken from [71]. For the sake of clarity, in Table 2.1 we give a map of the
algorithms.

scheme I scheme II scheme III
steady Stokes Alg. 2 or see [14] Alg. 1 -
steady Oseen Alg. 2 Alg. 5 -
steady NS Alg. 3 Alg. 6 Alg. 8

unsteady Stokes Alg. 4 Alg. 7 Alg. 8
unsteady Oseen Alg. 2 (4 if β = β(x)) Alg. 7 Alg. 8
unsteady NS Alg. 2 Alg. 7 Alg. 8 or 9

Table 2.1: Algorithms for the flow rate problem
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2.5.3 Schur complement scheme + GMRes (Scheme I)

General algorithm

Referring to the Schur complement+iterative solver scheme introduced above, we
rewrite (2.33) in a more compact form:

[
N Φ̃t

Φ̃ 0

] [
Xn+1

Λn+1

]
=

[
Hn+1

Qn+1

]
(2.43)

where N =

[
K Bt

B 0

]
. Since the discrete inf-sup condition holds, N is nonsin-

gular, so we can reduce system (2.43) by eliminating Xn+1 as:

Φ̃N−1Φ̃tΛn+1 = Φ̃N−1Hn+1 −Qn+1.

where with N−1 we formally indicate the solution of a Oseen or of a linearized
Navier-Stokes problem. Matrix R = Φ̃N−1Φ̃t is the Schur complement associated
to (2.43). The following result extends the one in Proposition 7:

Proposition 8 Matrix R is positive semidefinite.

The proof is analogous to the one of Proposition 7. Nevertheless, since N is not
symmetric in the general case, we resort to the GMRes method as iterative solver
for the computation of Λn+1 (see [61]). In particular, we obtain the following (we
omit for the sake of clearness the index n+ 1):

Algorithm 2

For each n solve:

Λ0 = (λ01, . . . , λ0m) is given

a) NX1 =H − Φ̃tΛ0

r0 = Φ̃X1 −Q

v1 =
r0

‖r0‖

for j = 1, . . . , m

ηj = Φ̃tvj

b) Nξj = ηj
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wj = Φ̃ξj

for i = 1, . . . , j

hij = (wj, vi)

wj = wj − hijvi

end

hj+1,j = ‖wj‖
if hj+1,j = 0

n = j go to (*)

else vj+1 =
wj

hj+1,j

end

end

(*) z = min‖‖r0‖e1 −Hnz‖

Λ = Λ0 + V z

X =X1 − Y z �

With V we indicate the matrix whose columns are the vectors v1, . . . , vm, with
Y the matrix whose columns are the vectors Y 1, . . . ,Y m, Hm is the (m+1)×m
matrix whose entries are hij and where the norm are the Euclidean ones.

We notice that a system in N has to be preliminarily solved for the computa-
tion of the initial residual (step a)). Then, since GMRes converges in at most m
iterations (recall that m is the number of sections where flow rate conditions are
prescribed, so it is usually a small number), further m systems in N are solved
to compute the residual at each iteration (step b)). Finally, once Λ has been
computed, a further system in N should be solved for the computation of the
velocity and the pressure fields. However, the residual computation in the last
GMRes step on the converged solution already entails the solution of the latter
system in N , so that the final velocity-pressure computation actually resorts to
an algebraic manipulation of vectors. This means that m+1 systems in N at each
time step are required for this scheme. Moreover, to solve a system for N actually
corresponds to the solution of a Oseen or of a linearized Navier-Stokes problem
with Neumann conditions on the sections where the flow rate is prescribed. This
can be pursued, for example, by means of a given (generic) solver.
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The steady Navier-Stokes problem

A specific scheme can be devised for the steady Navier-Stokes problem. In this
case we have the problem in building matrix N , whose element ij is [((uh ·
∇)ψi,ψj)], if i, j ≤ Nu, where uh =

∑Nu

j=1Xjψj is the approximated solution
related to X. In order to linearize the algorithm we resort to a fixed point
strategy, obtaining:

Algorithm 3

(See Figure 2.3)
For k=1,. . . (fixed point iterations)

1) Given an initial guess X (0), until convergence build for each k matrix N (k)

whose element ij is [((u
(k−1)
h · ∇)ψi,ψj)] and solve

Λ
(k)
0 = (λ

(k)
01 , . . . , λ

(k)
0m) is given

N (k)X
(k)
1 =H − Φ̃tΛ

(k)
0

r
(k)
0 = Φ̃X

(k)
1 −Q

v
(k)
1 =

r
(k)
0

‖r(k)
0 ‖

for j = 1, . . . , m

η
(k)
j = Φ̃tv

(k)
j

N (k)ξ
(k)
j = η

(k)
j

w
(k)
j = Φ̃ξ

(k)
j

for i = 1, . . . , j

h
(k)
ij = (w

(k)
j , v

(k)
i )

w
(k)
j = w

(k)
j − h

(k)
ij v

(k)
i

end

h
(k)
j+1,j = ‖w(k)

j ‖
if h

(k)
j+1,j = 0

n = j go to (*)

else v
(k)
j+1 =

w
(k)
j

h
(k)
j+1,j

end

end
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(*) z(k) = min‖‖r(k)
0 ‖e1 −H

(k)
n z(k)‖

Λ(k) = Λ
(k)
0 + V (k)z(k)

X (k) =X
(k)
1 − Y (k)z(k)

2) Convergence test

End fixed point iterations. �

Obviously, for each iteration k we have to solve m + 1 linearized Navier-Stokes
problems.

 

Yes

No

Given an initial guess X (0)

Algorithm 2(k)
k = k + 1

Build (N
(k)
S )ij = [((u

(k−1)
h · ∇)ψi,ψj)]

FIXED POINT ITERATIONS

Convergence test

END

Figure 2.3: Algorithm 3 for the resolution of the steady Navier-Stokes problem -
scheme I
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The unsteady case with constant in time convective field

Let us consider the unsteady problem with β = β(x) and in particular the
unsteady Stokes problem (β = 0). In this case, we can exploit the fact that
matrix N does not depend on time. In particular, we point out that the solution
of problems at step b) in Algorithm 2 can be computed outside of the time loop.
In fact, if we know the solution of the m problems

Nθi = Φ̃tβi, j = i, . . . , m,

being β1, . . . ,βm a basis of R
m, we can construct the unknown ξj of problems at

step b) by:

ξj =

m∑

i=1

vjiθi,

with vji the elements of matrix V definied in Algorithm 2. In particular we have:

Algorithm 4

1) Choose (β1, . . . ,βm) a basis of R
m

Solve Nθi = Φ̃tβi, j = i, . . . , m

2) Temporal loop. For each n solve:

Λ0 = (λ01, . . . , λ0m) is given

NX1 = H − Φ̃tΛ0

r0 = Φ̃X1 −Q
v1 =

r0

‖r0‖
for j = 1, . . . , m

ξj =
∑m

i=1 vjiθi,

wj = Φ̃ξj

for i = 1, . . . , j

hij = (wj, vi)

wj = wj − hijvi

end

hj+1,j = ‖wj‖
if hj+1,j = 0

n = j go to (*)
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else vj+1 =
wj

hj+1,j

end

end

(*) z = min‖‖r0‖e1 −Hnz‖
Λ = Λ0 + V z

X = X1 − Y z �

Therefore, in this particular case, the solution of the augmented problem can be
obtained by solving m steady problems out of the temporal loop and 1 unsteady
problem, all with standard boundary conditions. We point out that if β = 0,
since matrix R is symmetric, we could resort to the CG method as well, as
iterative solver for the computation of the Lagrange multipliers.

2.5.4 Continuous splitting-based scheme (Scheme II)

An alternative method stems from an extension of the splitting presented for the
steady Stokes case in Section 2.5.2. The non linearity and the unsteadiness make
this extension not trivial. We introduce our proposal by starting from a steady
linear Oseen problem and then extending it to the steady non linear and to the
unsteady case.

Steady Oseen problem

We refer to the augmented steady Oseen problem:





a(u, v) + ((β · ∇)u, v) + b(p, v)+

+
m∑

j=1

λj

∫

Γj

v · n dγ = (f , v), x ∈ Ω

b(q,u) = 0, x ∈ Ω∫

Γi

u ·n dγ = Qi ∀i = 1, . . . , m,

(2.44)

for all v ∈ V and q ∈ L2(Ω). It is easy to check that the solution of the previous
problem is given by 




u = ũ+

m∑

i=1

λi(t)wi,

p = p̃+
m∑

i=1

λi(t)πi,

(2.45)
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where (wi, πi), i = 1, . . . , m, are the solutions of the Oseen problems:





a (wi, v) + (β · ∇)wi, v) + b (πi, v) = −
∫

Γi

v ·ndγ

b (q,wi) = 0,

(2.46)

∀v ∈ V , ∀q ∈ L2(Ω), while (ũ, p̃) is the solution of the Oseen problem:

{
a (ũ, v) + (β · ∇)ũ, v) + b (p̃, v) = (f , v)
b (q, ũ) = 0

(2.47)

∀v ∈ V , ∀q ∈ L2(Ω). Let us notice that (2.46) are standards problems, where
natural conditions are prescribed on Γi, namely for the j−th problem we impose

(pn− µ∇u n)|Γi
= δijn

(δij is the Kronecker delta), while in (2.47) natural homogeneous conditions are
prescribed on Γi. To compute the Lagrange multipliers λi, we substitute the first
of (2.45) in the flow rate boundary conditions (2.44)3, obtaining:

m∑

j=1

λj

∫

Γi

wj · ndγ = Qi −
∫

Γi

ũ ·ndγ, (2.48)

i.e. the same linear system (2.41) of Algorithm 1. We resort to the following

Algorithm 5

(See Figure 2.4)

1) Solve for all i = 1, . . . , m





a (wi,h, vh) + ((β · ∇)wi,h, vh) + b (πi,h, vh) = −
∫

Γi

vh · ndγ

b (qh,wi,h) = 0,

(2.49)

∀vh ∈ V h, ∀qh ∈ Qh.

2) Solve

{
a (ũh, vh) + ((β · ∇)ũh, vh) + b (p̃h, vh) = (f , vh)
b (qh, ũh) = 0

(2.50)

∀vh ∈ V h, ∀qh ∈ Qh.
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3) Solve the linear system

m∑

j=1

λj,h

∫

Γi

wj,h ·ndγ = Qi −
∫

Γi

ũh · ndγ (2.51)

for the unknowns λj,h.

4) Build the solution:





uh = ũh +

m∑

i=1

λi,h(t)wi,h,

ph = p̃h +
m∑

i=1

λi,h(t)πi,h,

(2.52)

�

Therefore, the solution of the augmented steady Oseen problem is obtained

For all j = 1, . . . , m
Solve (2.49)

Solve (2.50)

Solve linear system (2.51)

Build solution with (2.52)

Figure 2.4: Algorithm 5 for the resolution of the steady-Oseen problem - scheme
II

by solving m + 1 steady Oseen problem with standard boundary conditions.
The computational effort of Algorithm 5 is the same of the one of Algorithm 2.
Nevertheless, let us notice that if f = 0, problem at step 2) can be dropped since
it admits the unique solution u = 0, p = 0.
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Steady Navier-Stokes problem

As in the case of scheme I, in order to linearize the steady Navier-Stokes problem,
we can resort to a fixed point strategy. In particular, a procedure similar to
Algorithm 5 (with β equal to the numerical solution at the previous iteration)
should be solved in an iterative framework until convergence. Therefore, we
should solve m + 1 problems for each iteration (as for scheme I). In order to
reduce the computational effort, an alternative splitting can be considered. In
particular, we resort to the following:

Algorithm 6

(See Figure 2.5)

1) Solve for all i = 1, . . . , m the standard Stokes problems




a (wi,h, vh) + b (πi,h, vh) = −
∫

Γi

vh · ndγ

b (qh,wi,h) = 0,

(2.53)

∀vh ∈ V h, ∀qh ∈ Qh.

2) For k = 0, . . . (fixed point iterations)

a) Given an initial guess uh,(0), solve until convergence




a
(
ũh,(k+1), vh

)
+
(
(uh,(k) · ∇)ũh,(k+1), vh

)
+ b
(
p̃h,(k+1), vh

)
=

= (f , vh) −
m∑

i=1

λi,h,(k)

(
(uh,(k) · ∇)wi,h, vh

)

b
(
qh, ũh,(k+1)

)
= 0

(2.54)
∀vh ∈ V h, ∀qh ∈ Qh.

b) Solve the linear system
m∑

j=1

λj,h,(k+1)

∫

Γi

wj,h · ndγ = Qi −
∫

Γi

ũh,(k+1) ·ndγ (2.55)

for the unknowns λj,h,(k+1).

c) Build the solution:




uh,(k+1) = ũh,(k+1) +

m∑

i=1

λi,h,(k+1)wi,h,

ph,(k+1) = p̃h,(k+1) +
m∑

i=1

λi,h,(k+1)πi,h,

(2.56)
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d) Convergence test

End fixed point iterations. �

In particular, the convective terms in the problems at step 1) have been moved
in (2.54), in order to decouple the computation of (wh, ph) on one side and of
(uh, ph, ũh, p̃h) on the other. Therefore, with this splitting, the fixed point strat-
egy involves step 2a), 2b) and 2c) and therefore entails only one differential
problem at each iteration.

Yes

No

k = k + 1

Build solution with (2.56)

Solve linear system (2.55)

Solve (2.54)

For all j = 1, . . . , m
Solve (2.53)

FIXED POINT ITERATIONS

END

Convergence test

Figure 2.5: Algorithm 6 for the resolution of the steady Navier-Stokes problem -
scheme II.
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The unsteady problems

Let us consider the augmented Oseen problem (2.6). It is easy to check that the
solution of this problem is given by (2.45), where (wi, πi), i = 1, . . . , m, are the
solutions of the steady Stokes problems:





a (wi, v) + b (πi, v) = −
∫

Γi

v · ndγ

b (q,wi) = 0,

(2.57)

∀v ∈ V , ∀q ∈ L2(Ω), while (ũ, p̃) is the solution of the unsteady Oseen problem:





(
∂ũ

∂t
, v

)
+ a (ũ, v) + ((β · ∇)ũ, v) + b (p̃, v) =

= −
m∑

i=1

∂λi

∂t
(wi, v) −

m∑

i=1

λi ((β · ∇)wi, v) + (f , v)

b (q, ũ) = 0
ũ|t=0 = u0

(2.58)
∀v ∈ V , ∀q ∈ L2(Ω). To compute the Lagrange multipliers λi, we solve the linear
system (2.48).

Since in (2.58) and (2.48) the computations of ũ and λi are coupled, we can
resort to a fixed point strategy to solve them separately. In particular, setting
βn+1 = β(tn+1) and ũ0

h = u0,h, let us consider the following

Algorithm 7

(See Figure 2.6)

1) Solve for all i = 1, . . . , m the steady problems (2.53).

2) For n = 1, . . . (time loop)
Pose λn+1

i,h,(0) = λn
i,h, ∀i = 1, . . . , m

a) For k = 0, . . . (fixed point subiterations)
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i) Find ũn+1
h,(k+1) and p̃n+1

h,(k+1), such that




α

∆t

(
ũ

n+1
h,(k+1), vh

)
+ a

(
ũ

n+1
h,(k+1), vh

)
+ ((βn+1 · ∇)ũn+1

h,(k+1), vh)+

+b
(
p̃n+1

h,(k+1), vh

)
= −

m∑

i=1

αλn+1
i,h,(k) −

∑r≤n
j=1 τjλ

n−j
i,h

∆t
(wi,h, vh)+

−
m∑

i=1

λn+1
i,h,(k)

(
(βn+1 · ∇)wi,h, vh

)
+

+

r≤n∑

j=0

τj
∆t

(
ũ

n−j
h , vh

)
+
(
fn+1, vh

)

b
(
qh, ũ

n+1
h,(k+1)

)
= 0

(2.59)
∀vh ∈ V h, ∀qh ∈ Qh, with ũ0

h = u0,h for t = 0.

ii) Solve the linear system

m∑

j=1

λn+1
j,h,(k+1)

∫

Γi

wj,h · ndγ = Qn+1
i −

∫

Γi

ũ
n+1
h,(k+1) · ndγ (2.60)

for the unknowns λn+1
j,h,(k+1).

iii) Convergence test.

End fixed point subiterations (after kn iterations)
b) Build the solution:





un+1
h = ũ

n+1
h,kn

+
m∑

i=1

λn+1
i,h,kn

(t)wi,h,

pn+1
h = p̃n+1

h,kn
+

m∑

i=1

λn+1
i,h,kn

(t)πi,h,

(2.61)

End time loop �

This approach resorts to the solution of m steady Stokes problems out of the
time loop and of one Oseen problem with standard boundary conditions for each
subiteration of the fixed point algorithm (step (i)). A convergence analysis of this
scheme has not been carried out so far. However numerical evidence suggests that
it features good convergence properties (see Section 2.6).

In the time discrete Navier-Stokes problem the convective term represents the
velocity extrapolated by the previous time steps, i.e. we set

βn+1 = un
h.
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Remark 3 In the special case in which only one flux is prescribed on the artificial
section Γ, an easier modification of splitting (2.57), (2.58), (2.48) and (2.45), can
be used. In particular, the solution (u, p) of problem (2.6) is given in this case by

{
u = λũ,
p = λp̃,

(2.62)

where (ũ, p̃) is the solution of the unsteady Oseen problem:




(
∂ũ

∂t
, v

)
+ a (ũ, v) + ((β · ∇)ũ, v) + b (p̃, v)+

+
1

λ

∂λ

∂t
(ũ, v) = −

∫

Γ

v ·n dγ + (f , v)

b (q, ũ) = 0
ũ|t=0 = u0

(2.63)

∀v ∈ V , ∀q ∈ L2(Ω) and where we choose λ(0) = 1. In fact, by multiplying
equation (2.63) per λ and using (2.62), we obtain (2.6)1. In order to compute the
Lagrange multiplier λ, we substitute (2.62) in the flow rate boundary condition
(2.6)4, obtaining

λ =
Q∫

Γ
ũ · ndγ (2.64)

Also in this case a fixed point algorithm is required, since in (2.63) and (2.64)
the computation of ũ and λ is coupled. Nevertheless, in this case we can avoid
the computation of the steady problems (2.57).

2.5.5 Inexact splitting (scheme III)

The drawback of the algorithms presented in Section 2.5.3 and 2.5.4 (schemes I
and II) is that in both the cases the computation of the solution is obtained by
resorting to an iterative procedure: the iterative solver (GMRes) for the resolu-
tion of the linear system in Λ in scheme I and the fixed point-based strategy in
scheme II. Therefore the computational costs of these strategies could be quite
expensive in practical applications. In this section we propose an approximate
(inexact) algorithm for the solution of the augmented problem. Since this ap-
proach does not require an iterative approach, it yields a significant reduction of
the computational costs. This strategy is based on an alternative (exact) contin-
uous splitting of the augmented formulation. In the sequel, we firstly introduce
the exact splitting. Then, we propose its approximation that leads to scheme III.
In particular, the exact splitting we are going to show is a modification of the one
proposed in the previous section (scheme II). We refer firstly to the augmented
Oseen problem (2.6). More precisely, consider the following scheme:
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1. Solve the steady Neumann problems (2.57).

2. Solve the unsteady Neumann homogeneous problem. For all v ∈ V , q ∈
L2(Ω), j = 1, 2, . . . , m find s ∈ L2(0, T,V ) ∩ L∞(0, T,L2(Ω)) and
ξ ∈ L2(0, T, L2(Ω)) such that





(
∂s

∂t
, v

)
+ a (s, v) + ((β · ∇) s, v) + b (ξ, v) = (f , v)

b (q, s) = 0,
(2.65)

with the initial condition s|t=0 = u0.

3. Solve the following linear system. Let B be the matrix given by (2.16), and
S the m vector with elements

Si =

∫

Γi

s ·ndγ.

Let us denote with Q the vector with components Qi (i = 1, . . . , m). We
find therefore the vector η(t) by solving

Bη = Q− S. (2.66)

4. Solve the following unsteady augmented homogeneous problem. Find e ∈
L2(0, T,V ) ∩ L∞(0, T,L2(Ω)), ε ∈ L2(0, T, L2(Ω)) and ν ∈ (L2(0, T ))m

such that for all v ∈ V , q ∈ L2(Ω):





(
∂e

∂t
, v

)
+ a (e, v) + ((β · ∇)e, v) + b (ε, v) +

m∑

i=1

νi

∫

Γi

v ·ndγ =

= −
m∑

j=1

dηj

dt
(wj, v) −

m∑

j=1

ηj ((β · ∇)wj, v)

b (q, e) = 0∫

Γi

e · ndγ = 0 i = 1, 2, . . .m

,

(2.67)
with the initial condition: e|t=0 = 0.
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It is possible to verify by linear combination that solution of problem (2.6) can
be written as: 




u = s+ e+

m∑

j=1

ηjwj,

p = ξ + ε+

m∑

j=1

ηjπj,

λi = νi + ηi ∀i = 1, 2, . . .m.

It is worth noting that all the subproblems are well posed under suitable
assumptions. Namely, (2.57) are standard steady Stokes problems, (2.65) is still
a standard unsteady Oseen problem, (2.67) is a homogeneous augmented problem,
analyzed in Section 2.3.2. The steady problems are obviously to be solved once
at all at the beginning of computations.

Remark 4 If f = 0 and u0 = 0 problem (2.65) admits the trivial solution s = 0
and ξ = 0. By exploiting this circumstance, in this case numerical solution of
(2.65) can be dropped.

In the previous splitting, we compute separately the contributions to the so-
lution given by the forcing term and the flow rates. The latter still requires the
solution of an augmented (homogeneous) problem, and it is expensive to solve, as
pointed out in Section 2.5.3 and 2.5.4. We therefore approximate problem (2.67)
with the following one. Let us set Γ̂ ≡ Γw ∪ Γ1 ∪ . . . ∪ Γm ≡ ∂Ω \ Γ0.

Problem 20 Find ê ∈ L2(0, T,H1
Γ̂
(Ω))∩L∞(0, T,L2(Ω)) and ε̂ ∈ L2(0, T, L2(Ω))

such that for all v ∈H1
Γ̂
(Ω), q ∈ L2(Ω):





(
∂ ê

∂t
, v

)
+ a (ê, v) + ((β · ∇) ê, v) + b (ε̂, v) =

= −
m∑

j=1

dηj

dt
(wj, v) −

m∑

j=1

ηj ((β · ∇)wj, v)

b (q, ê) = 0

(2.68)

with the initial condition: ê|t=0 = 0.

This is a standard Oseen problem with homogeneous Dirichlet conditions on Γ̂.
Let V̂ h be a inf-sup compatible subspace of H1

Γ̂
. Therefore, the outline of the

scheme is given by the following:

Algorithm 8
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(See Figure 2.7)

1) Preliminar computations: Solve the m steady problems (2.53).

2) Time loop: Solve the sequence of (standard) problems:

i) For all vh ∈ Vh, qh ∈ Qh, j = 1, 2, . . . , m, find sh ∈ L2(0, T,Vh) ∩
L∞(0, T,L2(Ω)) and ξh ∈ L2(0, T ;Qh) such that




α

∆t

(
sn+1

h , vh

)
+ a

(
sn+1

h , vh

)
+ (
(
βn+1 · ∇

)
sn+1

h , vh) + b
(
ξn+1
h , vh

)
=

=
(
fn+1, vh

)
+

r≤n∑

j=0

τj
∆t

(
s

n−j
h , vh

)
+

b
(
qh, s

n+1
h

)
= 0,

(2.69)
with the initial condition s0

h = u0,h.

ii) Solve the linear system

m∑

j=1

λn+1
j,h

∫

Γi

wj,h · ndγ = Qn+1
i −

∫

Γi

sn+1
h · ndγ (2.70)

for the unknowns λn+1
j,h .

iii) Find êh ∈ L2(0, T ; V̂ h) ∩ L∞(0, T ;L2(Ω)) and ε̂h ∈ L2(0, T ;Qh) such
that for all vh ∈ V̂ h, qh ∈ Qh:




α

∆t

(
ên+1

h , vh

)
+ a

(
ên+1

h , vh

)
+ ((βn+1 · ∇)ên+1

h , vh) + b
(
ε̂n+1

h , vh

)
=

=

r≤n∑

j=0

τj
∆t

(
ê

n−j
h , vh

)
−

m∑

i=1

αηn+1
i,h −

∑r≤n
j=1 τjη

n−j
i,h

∆t
(wi,h, vh) +

−
m∑

j=1

ηn+1
j,h

((
βn+1 · ∇

)
wj,h, vh

)

b
(
qh, ê

n+1
h

)
= 0

(2.71)
with the initial condition: ê0

h = 0.

iv) Final assembling: Set:




ûn+1
h = sn+1

h + ên+1
h +

m∑

j=1

ηn+1
j,h wj,h,

p̂n+1
h = ξn+1

h + ε̂n+1
h +

m∑

j=1

ηn+1
j,h πj,h.

(2.72)
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2) End time loop.

�

We point out that in this approximation the Lagrange multipliers λi are not
explicitely computed. Tipically, this is not a problem, since the interest is for
the velocity and pressure fields. However, we recall that in the present varia-
tional formulation the Lagrangian multiplier has the physical meaning of normal
stress (see Proposition 1 in Section 2.2.1) and this can be of some interest in
the geometrical multiscale approach for coupling 3D models to 1D or lumped
parameters models in the framework of computational haemodynamics (see, for
example, [14, 16, 19]). In scheme III, the Lagrange multipliers can be therefore
computed as a post-processing step starting from the approximate velocity and
pressure fields.

Remark 5 Observe that in the steady Stokes case, namely for
dηj

dt
= 0 for each

j = 1, 2, . . . , m, problem (2.67) and (2.68) both have the unique solution e = ê =
0. In this case, therefore, scheme III yields the exact solution.

For what concernes the Navier-Stokes problem, if a semi-implicit treatment
of the convective term is chosen, then it is sufficient to set

βn+1 = un
h.

in Algorithm 8. Let us now consider the case of a genuine Navier-Stokes nonlinear
problem solved with an implicit time discretization. For the sake of clarity, we
refer to the implicit Euler discretization, even if the same approach can be adopted
with every implicit time advancing scheme. In this case, the inexact splitting can
be adopted in a fixed point iterative framework.

Algorithm 9

(See Figure 2.8)

1) Solve steady Stokes Neumann problems (2.53).

2) For n = 1, . . . (temporal loop)
Pose ûn+1

(0) = ûn, s0
h = u0,h and ê0

h = 0
For k = 0, . . . (fixed point subiterations)
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a) Solve the unsteady Neumann homogeneous problem: find sn+1
h,(k+1),

ξn+1
h,(k+1) such that





(
sn+1

h,(k+1) − sn
h

∆t
, vh

)
+ a

(
sn+1

h,(k+1), vh

)
+

+
(
(ûn+1

h,(k) · ∇)sn+1
h,(k+1), vh

)
+ b
(
ξn+1
h,(k+1), vh

)
=
(
fn+1, vh

)

b
(
qh, s

n+1
h,(k+1)

)
= 0,

(2.73)

b) Linear system:
Bηn+1

h,(k+1) = Qn+1 − Sn+1
h,(k+1) (2.74)

c) Homogeneous Dirichlet problem: as for problem (2.71), solve:





(
ên+1

h,(k+1) − ên
h

∆t
, vh

)
+ a

(
ên+1

h,(k+1), vh

)
+
(
(ûn+1

h,(k) · ∇)ên+1
h,(k+1), vh

)
+

+b
(
ε̂n+1

h,(k+1), vh

)
= −

m∑

j=1

ηn+1
j,h,(k+1) − ηn

j,h

∆t
(wj,h, vh) +

−
m∑

j=1

ηn+1
j,h,(k+1)

(
(ûn+1

h,(k) · ∇)wj,h, vh

)

b
(
qh, ê

n+1
h,(k+1)

)
= 0

(2.75)

d) Final assembling: for θ real parameter, set:





ûn+1
h,(k+1) = θ

(
ên+1

h,(k+1) + sn+1
h,(k+1) +

m∑

j=1

ηn+1
j,h,(k+1)wj,h

)
+ (1 − θ)ûn+1

h,(k)

pn+1
h,(k+1) = θ

(
ε̂n+1

h,(k+1) + ξn+1
h,(k+1) +

m∑

j=1

ηn+1
j,h,(k+1)πj,h

)
+ (1 − θ)p̂n+1

h,(k)

(2.76)

e) Convergence test

End fixed point subiterations

End temporal loop. �

Numerical evidence (see Section 2.6) suggests that with an appropriate selection
of the relaxation parameter θ, this algorithm converges in a few iterations to the
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fixed point, yielding the desired approximate solution of the augmented problem
with an implicit time advancing scheme.

We point out that in the exact version of scheme III a null flux problem
is solved instead of (2.58) in scheme II. In this way, this problem gives a null
contribution when introduced in the flow rate equations (2.6)4 in order to build
the linear system in the unknown λi. Therefore, the computation of the Lagrange
multipliers and of the intermediate velocity are decoupled and it is not necessary
anymore to resort to a fixed point algorithm. The price to pay is the following:
the null flux problem is still an augmented problem and therefore, in solving it
approximatively, we introduce an error in a small neighborhood of the artificial
sections where the flow rate is prescribed. From the practical viewpoint, this
means that correct numerical results can be obtained in the region of interest
by working in a slightly extended computational domain. Even when working
with a larger domain, in fact, the computational times of the present method are
significantly reduced with respect to the “exact” Lagrange multiplier approaches
(scheme I and II), yielding comparable numerical results in the region of interest
(see Section 2.6).

Observe that since the error in scheme III has been introduced by forcing a
null velocity profile (Dirichlet condition) in (2.68) instead of a null flow rate, as a
matter of fact, we are prescribing a ”wrong” velocity profile. Therefore the error
analysis can be based on the result proven in Theorem 7. Nevertheless, as the
numerical results in Section 2.6 highlight, the errors made with this strategy are
less than the ones done by imposing directly a parabolic or a flat profile fitting
the desired flow rate (as in the practical approach). The reasons of this improve-
ment is double. On one hand, we point out that the (inexact) contribution on
the solution of scheme III at the artificial sections is given only by the preliminar
computations (2.57), since problem (2.68) gives a null contribution. The veloc-
ity profile arising from (2.57) takes into account the computational domain and
therefore it should be more accurate than an arbitrary one (as in the practical
approach). On the other hand, in problem (2.68) we are imposing a null Dirich-
let boundary condition, i.e. we are considering a problem with small Reynolds
number near the boundary. Therefore, the error is smaller than the one made
imposing directly a non-null velocity profile (as in the practical approach), where
Re could be very big.

The present proposal could therefore be considered as an intermediate and
reliable approach between the engineering one (practical approach), requiring a
relevant expansion of the domain for loosing the effects of the arbitrary velocity
profile selection, and the exact one based on the augmented reformulation.
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Yes

No

n = n + 1

k = k + 1

TIME LOOP

END TIME LOOP

Convergence test

Solve linear system (2.60)

FIXED POINT SUBITERATIONS

Solve (2.59)

For all j = 1, . . . , m
Solve (2.53)

END FIXED POINT SUBITERATIONS

Build solution with (2.61)

Figure 2.6: Algorithm 7 for the resolution of the unsteady Oseen problem - scheme
II
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For all j = 1, . . . , m

n = n+ 1

Solve linear system (2.70)

Build solution with (2.72)

(2.71)Solve

TIME LOOP

Solve (2.53)

END

Solve (2.69)

Figure 2.7: Algorithm 8 for the resolution of the unsteady Oseen problem - scheme
III
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Yes

No

k = k + 1

n = n + 1

END TIME LOOP

END FIXED POINT SUBITERATIONS

Convergence test

Build solution with (2.76)

Solve (2.75)

Solve linear system (2.74)

For all j = 1, . . . , m
Solve (2.53)

TIME LOOP

Solve (2.73)

FIXED POINT SUBITERATIONS

Figure 2.8: Algorithm 9 for the resolution of the unsteady Navier-Stoke problem
with an implicit scheme- scheme III
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2.6 Numerical results

In this section we present several numerical results concerning the three schemes
presented in Section 2.5. In particular, in Section 2.6.1 and 2.6.2 the 2-dimensional
and the 3-dimensional cases are considered, respectively. For each one of these
sections, firstly validation simulations on accademic cases where an analytical
solution is available are shown. Then, we focus on the error using scheme III and
finally on simulations concerning realistic geometries.

2.6.1 2D simulations

Validation test case - Poiseuille problem

In the first set of simulations we aim at validating the three algorithms proposed
in Section 2.5 in the 2d case, considering two cases where the analytical solution
of the Navier-Stokes equation is known: the Poiseuille solution when a steady
flow rate is imposed and the Womersley solution when a sinusoidal (or in general
a sum of sinus and cosinus) flow rate is prescribed (see [68]). With this purpose,
we use the 2d Finite Element code Freefem++ (see [21]). The simulations done
with this code have got also the aim of showing that the proposed schemes could
be implemented even with a standard finite element package.

The computational domain Ω is a rectangular whose size is 6 × 1 cm and the
viscosity is µ = 0.035 cm2/sec. In the first test case we consider the steady Stokes
problem and we impose a flux Q = 1 cm2/sec at the inlet Γ of Ω. In Figures 2.9

Figure 2.9: Axial velocity at the inlet section Γ in the steady Stokes simulation
obtained with scheme I (left) and with scheme II (right), h = 0.05 cm.

and 2.10 the axial velocity and the pressure, respectively, obtained with scheme
I (left) and with scheme II (right) are shown. We point out that in this case
scheme II and scheme III coincide, since the latter in the steady Stokes case gives
the exact solution (see Remark 5). Both the algorithms recover the well known
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Poiseuille solution

p(x) = 2.52
(
1 − 1

6
x
)

and

u(y) = 6y(1− y),

where u is the axial component of the velocity field and x and y are the axial and
the radial coordinates, respectively. In Table 2.2 is shown that the error in both
the cases is neglegible and that it does not depend on the space discretization h.

scheme I scheme II
h = 0.1 1.1542 · 10−7 1.1537 · 10−7

h = 0.05 1.1839 · 10−7 1.1809 · 10−7

Table 2.2: Errors in the L2(Γ) norm for different values of the space discretization
h for the Stokes steady simulation.

Figure 2.10: Pressure for a fixed y in the steady Stokes simulation obtained with
scheme I (left) and with scheme II (right), h = 0.1 cm.

In the second test case we consider the steady Navier-Stokes case, with the
same data of the previous simulation. We point out that in this case scheme II
and scheme III do not coincide, since problems (2.67) and (2.68) do not have as
solution the trivial one and therefore they could differ near the boundary. In all
the three cases, a fixed point strategy is required for managing the non-linear
term (see Section 2.5 and Table 2.4). In Figure 2.11, 2.12 and 2.13 the axial
velocity and the pressure obtained with the three strategies are shown. Also in
this case the Poiseuille solution is recovered.
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Figure 2.11: Axial velocity at the inlet section Γ in the steady Navier-Stokes
simulation obtained with scheme I (left) and with scheme II (right), h = 0.05 cm.

Figure 2.12: Axial velocity at the inlet section Γ obtained with scheme III (left,
h = 0.05 cm) and pressure for a fixed y obtained with scheme I (right, h = 0.1 cm)
in the steady Navier-Stokes simulation.

Validation test case - Womersley problem

The next simulations refer to the unsteady case. In particular, we prescribe a
flux Q = 0.15 cos(2πt) cm2/sec and we compare the numerical solution with the
Womersley one (see [68]). In Figure 2.14, 2.15 and 2.16 the comparision between
the numerical solution obtained with three schemes and the analytical one are
shown at different instants for the case of the Stokes problem. In Figure 2.17,
2.18 and 2.19 the same is done for the Navier-Stokes problem. We notice that
in both the cases the two solutions are in good agreement for each of the three
algorithms. The numerical solution obtained with scheme III highlights an error
in the neighborhood of the boundary Γ. In practice, as already pointed out
in Section 2.5.5, an affordable approach consists of enlarging the computational
domain in order to confine the boundary error induced by the inexact splitting
out of the region of interest. However, we point out that a small increase of the
computational domain is enough. As a matter of fact, in our case it is sufficient
to increase the lenght of the domain of 1cm. In Figure 2.16 and 2.19 we report
the numerical solution obtained with this strategy on a section sufficiently far
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Figure 2.13: Pressure for a fixed y in the steady Navier-Stokes simulation obtained
with scheme II (left) and with scheme III (right), h = 0.1 cm.

from the boundary, in order to compare it with the analytical solution. The next
Section is devoted to a deeper discussion of the error of the numerical solution
computed with scheme III.

Figure 2.14: Womersely test case - Stokes problem. Axial velocity compared
with the Womersley solution, t = 2.1 s (left) and t = 2.3 s (right) - scheme I. -
∆t = 0.01, h = 0.05

In Table 2.3 we report the errors obtained with the three algorithms for the
Stokes problem for different values of the space discretization h and of the time
step ∆t, at t = 2.1s (up) and t = 2.3s (bottom).

In Table 2.4 we report the number of the differential problems nd involved in
the three strategies (for the unsteady simulations we consider only the differential
problems for each time step, neglecting those out of the temporal loop) and the
CPU times. When a fixed point strategy is required, let us indicate with nk the
number of subiterations (in the unsteady cases, this number is the mean on the
temporal cycle). In these cases, we indicate in the brackets the value nd × nk.
Moreover, we point out that for scheme III in the unsteady case, the CPU times
refer to an enlarged domain.

Table 2.4 suggests the following considerations. For the steady case, scheme
II seems to be the fastest. For the unsteady Stokes problem, scheme I is cer-
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Figure 2.15: Womersely test case - Stokes problem. Axial velocity compared
with the Womersley solution, t = 2.1 s (left) and t = 2.3 s (right) - scheme II. -
∆t = 0.01, h = 0.05

Figure 2.16: Womersely test case - Stokes problem. Axial velocity, sufficiently
far from the boundary, compared with the Womersley solution, t = 2.1 s (left)
and t = 2.3 s (right) - scheme III. - ∆t = 0.01, h = 0.05

tainly the best strategy, ensuring reasonably low computational costs with good
accuracy properties. In the unsteady Navier-Stokes case, scheme III gives best
performances in terms of computational costs, with a good accuracy. Neverthe-
less, as we point out in the following sections, numerical simulations performed
with scheme III in realistic geometries are less accurate. Therefore, we can state
that, for general computational domains and physiological data, scheme I gives
best performances in terms of accuracy; on the other hand, as was to be expected,
scheme III features still the best properties in term of computational costs.
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Figure 2.17: Womersely test case - Navier-Stokes problem. Axial velocity com-
pared with the Womersley solution, t = 2.2 s (left) and t = 2.4 s (right) - scheme
I. - ∆t = 0.01, h = 0.05

Figure 2.18: Womersely test case - Navier-Stokes problem. Axial velocity com-
pared with the Womersley solution, t = 2.2 s (left) and t = 2.4 s (right) - scheme
II. - ∆t = 0.01, h = 0.05

Figure 2.19: Womersely test case - Navier-Stokes problem. Axial velocity, suffi-
ciently far from the boundary, compared with the Womersley solution, t = 2.2 s
(left) and t = 2.4 s (right) - scheme III. - ∆t = 0.01, h = 0.05
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scheme I scheme II scheme III
∆t = 0.01 h = 0.1 6.277 · 10−4 5.932 · 10−4 5.630 · 10−4

3.688 · 10−4 4.178 · 10−4 3.464 · 10−4

h = 0.05 6.132 · 10−4 5.987 · 10−4 6.054 · 10−4

3.450 · 10−4 5.813 · 10−4 3.217 · 10−4

∆t = 0.005 h = 0.1 5.995 · 10−4 6.127 · 10−4 5.356 · 10−4

3.391 · 10−4 4.237 · 10−4 3.522 · 10−4

h = 0.05 5.973 · 10−4 6.241 · 10−4 5.926 · 10−4

3.375 · 10−4 4.361 · 10−4 3.297 · 10−4

Table 2.3: Errors in the L2(Γ) norm for different values of the space discretization
h and of the time step ∆t for the Stokes unsteady simulation - t = 2.1 s (up) and
t = 2.3 s (bottom).

scheme I scheme II scheme III
Number steady Stokes 2 1 1

of steady NS 4(=2×2) 2(=2×1) 2(=2×1)
differential unsteady Stokes 1 7(=7×1) 1
problems unsteady NS 2 7(=7×1) 1

steady Stokes 12.73s 6.84s 6.84s
CPU steady NS 25.12s 13.25s 15.02s
times unsteady Stokes 11min 04s 75min 54s 11min 42s

unsteady NS 21min 42s 76min 28s 11min 52s

Table 2.4: Number of differential problems and CPU times involving in the three
algorithms, for different problems, with h = 0.1. We point out the high com-
putational costs of scheme II. For the unsteady simulations, we refer to a whole
period T = 1s, with ∆t = 0.01.
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Error using scheme III

In this section we investigate the error made using scheme III. In Figure 2.20 we
illustrate the results obtained by prescribing a sinusoidal-in-time flow (Q(t) =
0.1 · cos(2πt)cm2/s) at the inlet Γ of a rectangular Ω with size 4 × 1 cm. It is
possible to observe the difference between the solutions obtained with scheme I
and with scheme III. In particular, as expected from the analysis of Section 2.4,
we observe that the error significantly reduces far away from the boundary Γ,
as pointed out also in Figure 2.22 and 2.21. Moreover, the latter highlights that
the error is proportional to the measure of Γ (i.e. to the Reynolds number), as
expected from the error analysis in Section 2.4.

Figure 2.20: Comparison between the solution computed using scheme I (solid
line) and scheme III (dashed line) in the Womersley test case - h = 0.025, ∆t =
0.01, t = 1.6 s. The difference between the two solutions reduces when the
distance from the boundary increases. (Top, left: distance=0cm; Top, right:
0.2cm; Middle, left: 0.3cm; Middle, right 0.4cm; Bottom, left: 0.5cm; Bottom,
right: 1cm).
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Figure 2.21: Womersley test case - scheme III. Errors along the axial coordinate
at different instants for different values of the pipe radius - h = 0.1, ∆t = 0.01,
t = 1.5 s (top, left), t = 1.6 s (top, right), t = 1.7 s (bottom, left), t = 1.8 s
(bottom, right).

In Figure 2.23 the error of scheme III for different values of the time step is
shown. We notice that the boundary error does not depend on the time step.
Moreover, in Figure 2.24 and 2.25 the dependence of the error on the fluid vis-
cosity and on the Womersley number respectively is shown. We notice that the
smaller the viscosity (i.e. the bigger the Womersley number), the bigger is the
error near the boundary. This is confirmed by the fact that increasing the pul-
satility (i.e. the Womersley number) the error in solving equation (2.68) instead
of (2.67) grows up.

Figure 2.26 shows that the boundary error does not depend on the spatial dis-
cretization step, as expected. Finally, in Figure 2.27 the pressure solution and the
pressure error are shown with ∆t = 0.01s (left) and ∆t = 0.005s (right), pointing
out that also the pressure error is localized near the boundary, independently of
the discretization.

83



Figure 2.22: Womersley test case. Comparison between the velocity fields com-
puted using scheme I (left) and scheme III (right).

Figure 2.23: Womersley test case. Errors using scheme III for different values of
the time steps. On the right a detail of the errors in the centre of the domain,
where the error is essentially due to the time discretization - h = 0.1, t = 1.5 s.

Then, we solved the same Navier-Stokes problem by using the implicit Euler
scheme following the iterative procedure proposed in Algorithm 9, Section 2.5.5,
for the treatment of the convective term. In Table 2.5 the mean number of
subiterations per time step is shown. The convergence of the scheme can be
strongly improved by an appropriate selection of θ.
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Figure 2.24: Womersley test case. Dependence of the error using scehem III on
the fluid viscosity - h = 0.1, ∆t = 0.01, t = 1.5 s (left) and t = 1.6 s (right).

Figure 2.25: Womersley test case. Dependence of the error using scheme III on
the Womersley number - h = 0.1, ∆t = 0.01, t = 1.6 s.

θ = 0.1 θ = 0.5 θ = 0.9
# subiterations 70 13 5

Table 2.5: Mean number of subiterations per time step using the implicit scheme
III for the treatment of the convective term for different values of θ.
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Figure 2.26: Womersley test case. Dependence of the error using scheme III on
the space discretization - ∆t = 0.01, t = 1.5 s (top, left), t = 1.6 s (top, right),
t = 1.8 s (bottom, left), t = 1.9 s (bottom, right),
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Figure 2.27: Womersley test case - scheme III. Top: Pressure solution with ∆t =
0.01s (left) and ∆t = 0.005s (right). Bottom: Pressure splitting error. The time
steps is the same of the pictures at the top - h = 0.05, t = 1.8 s
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We compare now the error done with scheme III with the one obtained impos-
ing a parabolic velocity profile. In particular, let Ω be the domain in Figure 2.28,
modeling the extracorporeal membrane oxygenator of Bellhouse (see [4, 65]). This
is a high-efficiency membrane oxygenatore which utilizes pulsatile flow through
furrowed channels to achieve high mass transer rates. In particular, blood is
pumped back and forth through the channels with a small mean flow component.
Since there is a large mean pressure difference between the blood side and the
oxygen side of the channel, small transient pressure fluctuations that would oc-
cur during the flow cycle would not be expected to cause significant movement
of the membrane. The simplest approximation for a 2d model is to assume that
between the struts supporting the membrane the shape of the furrow is the arc
of a circle. This particular device is important for blood because it is able to
significantly reduce the fluid resistance without using turbolent flow. Let us set
Ωj ⊂ Ω the domains:

Ωj = {(x, y) ∈ Ω : x ≥ j}.
In Figures 2.29-2.34 the L2(Ωj) norm errors for different instants of the temporal

Ω

blood

oxygen

Figure 2.28: 2d domain for a Bellhouse oxygenator (see [4, 65].

cycle (left) and the L2(kT, (k + 1)T ;L2(Ωj)) norm errors for different cycles k
(right) are shown. We notice that the numerical solution computed with scheme
III is invariably more accurate than the one obtained by imposing a selected
velocity profile. Therefore, we conclude that using scheme III the enlargement of
the domain is smaller than the one required by the most used approach introduced
in Section 1.3.1. This is in agreement with the observations done in Section 2.5.5.
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Figure 2.29: L2(Ω) norm errors in the second cycle (left) and L2(L2) norm errors
for different cycles (right) using scheme III and practical approach. In abscissa
the time (left) and the number of the cycles (right).
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Figure 2.30: L2(Ω1) norm errors in the second cycle (left) and L2(L2) norm errors
for different cycles (right) using scheme III and practical approach. In abscissa
the time (left) and the number of the cycles (right).
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Figure 2.31: L2(Ω2) norm errors in the second cycle (left) and L2(L2) norm errors
for different cycles (right) using scheme III and practical approach. In abscissa
the time (left) and the number of the cycles (right).
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Figure 2.32: L2(Ω3) norm errors in the second cycle (left) and L2(L2) norm errors
for different cycles (right) using scheme III and practical approach. In abscissa
the time (left) and the number of the cycles (right).
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Figure 2.33: L2(Ω4) norm errors in the second cycle (left) and L2(L2) norm errors
for different cycles (right) using scheme III and practical approach. In abscissa
the time (left) and the number of the cycles (right).
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Figure 2.34: L2(Ω5) norm errors in the second cycle (left) and L2(L2) norm errors
for different cycles (right) using scheme III and practical approach. In abscissa
the time (left) and the number of the cycles (right).
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Computations in realistic cases

We focus now our attention on more realistic cases. Firstly, let us continue the
error analysis of scheme III. In particular, we simulate the flow of the fluid in an
anastomosis of a by-pass, whose sections have measure equal to 1cm and whose
lenght is equal to 10cm. We prescribed the physiological flux shown in Figure
2.35 (right) both at the bottom and at the top inlet (with 50cm2/s and 25cm2/s
as peak value respectively). Figures 2.35 (left) and 2.36 show that the error is
localized near the boundaries. Figure 2.37 points out again the dependence of
the boundary error on the measure of Γ. Moreover, in Figure 2.38 the pressure
field (left) and the pressure error (right) are shown.

In order to have a comparision between the computational efforts of scheme
I and scheme III, we use the latter in a domain extended of 0.5cm at both the
inlet. Nevertheless, the CPU time (see Table 2.6) is about one half of the one
requested by scheme I when the flow rate is prescribed at one inlet. The CPU
time reduction is even more evident when the flow rates are prescribed on both
the inlets. Therefore, differently from scheme I, as expected the computational
effort of scheme III does not depend on the number of the sections where we
prescribe the flow rate.

Figure 2.35: Anastomosis solution and physiological flux imposed at the two
inlets - scheme III.
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Figure 2.36: Solution in the anastomosis case: difference of the velocity computed
using scheme I and scheme III. On the right a zoom of the figure on the upper
inlet - h = 0.1, ∆t = 0.01, t = 1.5 s.

Figure 2.37: The same as in Figure 2.36 with an inlet radius one half of the case
plotted above.

Figure 2.38: Pressure solution (left) and difference between the solutions obtained
with scheme I and scheme III (right) for the anastomosis computation - h = 0.1,
∆t = 0.01, t = 1.8 s
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Test Case scheme I scheme III CPU sch.I/ CPU sch.III
Anastomosis

m = 1 7min 58s 4min 27s 0.56
Anastomosis

m = 2 11min 3s 4min 33s 0.41

Table 2.6: CPU times in the anastomosis test case. The final time was 1s, using
for both the simulations ∆t = 0.01s. The inexact splitting computations have
been performed on a extended domain, so that the two solutions in the domain
of interest covered by the exact solver coincide up to the discretization errors.
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In the sequel we report the numerical solutions obtained applying scheme
I in two academic code for 2d realistic domains. In the first we consider the
Finite element library Life II developed at M.O.X - Dipartimento di Matematica
- Politecnico di Milano and written in Fortran 77 and 90. The solver in this
code is based on an inexact algebraic splitting of the Navier-Stokes equations
(see for example [53]). In particular, a block factorized preconditioner based on
the Yosida scheme is implemented (see [69]).

As pointed out, different variational formulations can be associated with the
prescribed flux problem with different ”implicit boundary conditions”. Here we
compare the numerical results obtained with the two formulations provided in
Section 2.2, the one in Problem 11 (grad-grad formulation), and the one in Prob-
lem 13 (curl-curl formulation), on a bypass anastomosis. In particular, we impose
two sinusoidal flow rates at both the inlet. Figure 2.39 and 2.40 show the axial
velocity at two different instant and Figure 2.41 the modulus of the velocity at
the upper inlet. Moreover, in Figure 2.42 the pressure at the upper inlet is shown.
As expected, we have some differences between the two solutions, in particular
for the pressure (see Tab. 2.7).

‖ugrad − ucurl‖L∞L2

∫
Γup

|pgrad − pcurl|
2.16 · 10−4 5.31 · 10−1

Table 2.7: Differences between “grad-grad” and “curl-curl” formulations - scheme
I.

The next results are obtained with the Spectral/hp elements code Nektar, de-
veloped at the Aeronautic Department - Imperial College and written in C (see
[64]). This code is based on a differential splitting of the Navier-Stokes equa-
tions (see for example [8, 26]), in particular on a high-order splitting, featured in
[31]. These strategies split the computation of the velocity and of the pressure
resorting to a projection step. In particular, they introduce an intermediate dif-
ferential problem (for the unknown velocity or pressure) in order to reduce the
computational costs. One of the limit of the differential splitting is the introduc-
tion of an inaccuracy near the boundary due to the prescription of non-physical
boundary conditions for the intermediate problems (see [58]). In particular, this
phenomenon grows up if a Dirichlet boundary condition is imposed at the outlet
or a Neumann condition is imposed at the inlet of the domain in the original
problem.

In our case, we consider the problem of the flow division in a bifurcation. In
particular we would like to impose the flow rates in Figure 2.43 (left) at the inlet
and at the upper outlet of the bifurcation. Therefore, in this case we can prescribe
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Figure 2.39: Axial velocity in the anastomosis - Sinusoidal fluxes imposed - Grad-
grad (up) vs Curl-curl formulation (bottom) - t = 1.26 s - scheme I.

at the inlet an arbitrary velocity profile fitting the desired flow rate, extending
the domain in order to confine the error due to the imposition of a wrong profile
out of the zone of interest. Nevertheless, in order to reduce the error due to the
splitting, at the upper outlet we should impose a natural condition. A classical
choice is to resort to a null natural condition. Therefore, with this choice it is
not possible to recover the desired flow division. On the contrary, this problem
is avoided by using scheme I. In fact, we remind that the augmented formulation
resort to a (unknown) natural condition in order to prescribe the flow rate. In
Figure 2.43 (right) the percentage of flow rate passing through the upper outlet
is shown for both the choice of boundary conditions. In Figure 2.44 and 2.45
the velocity field is shown at the peak instant and at the middle of the cicle. It
is evident that by imposing a null stress condition at the upper outlet, we are
underestimating the flow rate passing through this section.
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Figure 2.40: Axial velocity in the anastomosis - Sinusoidal fluxes imposed - Grad-
grad (up) vs Curl-curl formulation (bottom) - t = 1.92 s - scheme I.
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Figure 2.41: Inlet velocity modulus at the beginning of the time period (left) and
at the half period (right) in a bypass simulation with sinusoidal prescribed flux -
Grad-grad (markers) vs Curl-curl (solid line) formulation - scheme I.
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Figure 2.42: Pressure at the upper inlet of the anastomosis - Sinusoidal fluxes
imposed - Grad-grad (left) vs Curl-curl formulation (right) - t = 1.37 s - scheme
I.
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Figure 2.43: Imposed physiological fluxes (left) and ratio between the fluxes at
the upper outlet and at the inlet using scheme I (blue line) and a zero stress
condition (green line) (right).

Figure 2.44: Velocity field prescribing the physiological flux with scheme I (left)
and imposing zero stress (right) on the upper outlet at the peak instant.
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Figure 2.45: Velocity field prescribing the physiological flux with scheme I (left)
and imposing zero stress (right) on the upper outlet at the middle of the cicle.
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2.6.2 3D simulations

2D axi-symmetric simulations

In this section, we consider the numerical simulations performed with the axi-
symmetric version of the code LifeII, developed at MOX - Politecnico di Milano
and at Institute of Analysis and Scientific Computing - EPFL. Thanks to this, it
is possible to obtain numerical results on a 3d/axi-symmetric geometry by solving
a 2d problem. In particular, we aim at validating scheme I and the scheme II
on analytical test cases. We simulate the flow in an axi-symmetric cylindrical
rigid domain with a prescribed flow rate (Q = 1 cm3/sec, ν = 0.035 cm2/sec.).
We recover the well known Poiseuille profile (see Fig. 2.46, left). Then, we
prescribe a sinusoidal-in-time flow (Q(t) = 1 · cos(2πt) cm3/sec), thus recovering
the Womersley solution (Fig. 2.46, middle and right and Table 2.8, see [78]).

In Tab. 2.9 we compare the numerical performances of the two numerical
schemes proposed. As pointed out, in the unsteady case the coupling between
the velocity and the Lagrange multipliers, due to the time derivative, makes
scheme II more expensive. Nevertheless, it seems more stable in time, as far as
it works with larger time steps.
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Figure 2.46: Axial velocity on a radius with a constant flux (on the left) and with
periodic flux at the beginning of the period (middle) and at a half period (right)
- scheme I - The markers refer to the numerical solution, continuous line being
the analytical one - h = 0.03125, ∆t = 0.01.

h = 1/16 h = 1/32

∆t = 0.001 1.043 · 10−4 1.211 · 10−4

∆t = 0.0005 4.063 · 10−5 3.679 · 10−5

Table 2.8: Errors (in L2(L2) norm) between the numerical and the analytical
solutions for the pulsatile flow simulation (scheme I).
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scheme I sscheme II

CPU time(sec) 20.97 486.35

error (L∞(L∞)) 0.005 0.011

∆t ≤ 0.01 ≤ 0.05

Table 2.9: scheme I vs. scheme II in the unsteady simulations.

3d validation test cases

In this set of simulations we studied the efficency of scheme I and of scheme III for
3d simulations, using the 3d Finite Element Library LifeV (see [36]), developed
at M.O.X - Dipartimento di Matematica - Politecnico di Milano, at Institute of
Analysis and Scientific Computing - EPFL and at INRIA - Paris and written
in C++. In this, the Navier-Stokes solver is based on a preconditioned pressure
matrix method (see [23]).

Firstly, we simulate the flow of the fluid in a cylinder Ω with radius r = 0.5 cm
and lenght l = 1 cm by prescribing a constant flow Q = 1 cm3/s and we solve the
Navier-Stokes equations using scheme I. Figures 2.47 show the axial velocity field
(left) and the comparision between the numerical and the analytical solution on a
radius of a section (right). We point out that the numerical solution differs from
the analytical one, in particular it is bigger. The reason is that the numerical
section Γh ⊂ Γ where we are prescribing the flow rate is such that

|Γh| ≤ |Γ|.
Since the flow rate prescribed on a section Σ is given by

Q = Ṽ |Σ|,

with Ṽ the mean velocity, in order to impose the desired flux we obtain

ũh ≥ ũ,

where with ũh and ũ we indicate the mean numerical and the mean analytical
velocity, respectively. We expect that, with a better space discretization, section
Γh fits better with the real section Γ and hence that the numerical solution is
in better agreement with the analytical one. This is confirmed by Figures 2.48.
Therefore, when a flow rate is prescribed on a 3d domain, a pre-process operation
would be mandatory if the computational domain does not coincide with the
analytical one. Moreover in Figure 2.49 the pressure field is shown. These results
are in good agreement with the Poiseuille solution:

{
p(z) = 1.426(1 − x)
u(x, y) = 2.546(1 − 4(x2 + y2)),
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where x and y are the radial coordinate and z is the axial coordinate.
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Figure 2.47: Steady simulation - Axial velocity field (left) and axial velocity on
a radius of a section (right) - h = 0.1 - scheme I.
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Figure 2.48: Steady simulation - Axial velocity field (left) and axial velocity on
a radius of a section (right) - h = 0.05 - scheme I.

Secondly, we prescribe the sinusoidal flow rate Q(t) = 1 · cos(2πt) cm3/sec at
the inlet of Ω. Figures 2.50 show the comparision between the numerical and the
analytical (Womersley) axial velocity.

In the next simulation we prescribe the physiological flow rate in Figure 2.35
(right) with peak value 0.2m3/s and a period T = 0.84 s. Figures 2.51 show the
comparision between the numerical solutions obtained with the 2d/axi-symmetric
library LifeII and with the 3d library LifeV. These solutions seem to be in good
qualitative agreement with the experimental measures (see [38]). We point out
that the 2d axi-symmetric code is not affected by the error on the measure of Γh,

101



Figure 2.49: Steady simulation - Pressure field - h = 0.05 - scheme I.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Radial coordinate(cm)

Ax
ia

l v
el

oc
ity

(c
m

/s
ec

)

 

 

computed solution
analytical solution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

Radial coordinate(cm)

A
xi

al
 v

el
oc

ity
(c

m
/s

ec
)

 

 

computed solution
analytical solution

Figure 2.50: Womersley simulation - Axial velocity on a section at t = 2.0 s (left)
and t = 2.2 s (right) - h = 0.05 - scheme I

since Γh = Γ in this case. This is confirmed by the numerical results, showing
that in the case of 2d axi-symmetric simulation the mean velocity is less than the
one performed by the 3d code.
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Figure 2.51: Physiological simulation - Axial velocity on a section at t = 0.85 s
(left) and t = 1.01 s(right) - h = 0.05 - scheme I
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We want now to investigate the error made with scheme III. In particular, we
refer to the Womersley simulation. In Figures 2.52 and 2.53 the differences of
the numerical solution obtained prescribing a parabolic velocity profile (left) and
using scheme III (right) with the analytical solutions are plotted. We observe
that also in the 3d computations the enlarged zone needed in order to obtain
a meaningful solution with scheme III is smaller then the one requested by the
practical approach.

Figure 2.52: Womersley simulation - Differences between the numerical (practical
approach, left - scheme III, right) and the analytical solution, h = 0.05, ∆t = 0.01,
t = 2.32 s
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Figure 2.53: Womersley simulation - Differences between the numerical (practical
approach, left - scheme III, right) and the analytical solution, h = 0.05, ∆t = 0.01,
t = 2.34 s
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Figure 2.54: Cavo-pulmonary connection: the vertical vessel is the Inferior Vena
Cava, the horizontal one is the Pulmonary Artery. Computational 3D grid (top,
left), velocity field (top, right, bottom left) and velocity field on Inferior Vena
Cava (bottom, right) - scheme II.

Computations in realistic cases

We want now to illustrate the solution of an augmented problem resorting to the
commercial package FIDAP as Navier-Stokes solver. For the sake of simplicity,
we refer to the solution of a steady Stokes solver by means of scheme II. In par-
ticular, we refer to the problem of the total cavopulmonary connection, which is
a surgical operation sometimes needed in pediatric pathologies in which only the
right ventricle works (see [39]). In this case, the pulmonary artery and the vena
cava are connected, leading to a cross-shape domain, as illustrated in Fig. 2.54
top-left, obtained starting from RNM data. The multiscale approach in this case
is mandatory to have realistic boundary data accounting for the whole vascular
network (see [51, 56]). Here we present some results obtained by prescribing
phisiological defective flow rate data on two of the four artificial sections. Ob-
serve from Figure 2.54 bottom-right, how the expected quasi-parabolic profile is
obtained as a numerical result of the augmented approach (without prescribing
it).
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Finally, we apply scheme I and scheme III in a carotid domain obtained from
real data of a patient through a cast produced by D. Liepsch - FH Munich (see
Figure 1.3) . We impose physiological flow rates in Figure 2.43 (left) at the inlet
and at the internal outlet of the domain, with a peak value equal to 20.31 cm3/s
and 17.39 cm3/s, respectively. Figures 2.55-2.60 show the velocity fields obtained
with scheme I, with scheme III and imposing a parabolic velocity profile at the
inlet and a flat velocity profile at the internal outlet (both fitting the prescribed
flow rates), respectively. We use LifeV as solver. Moreover, we refer to the
solution obtained with scheme I as the ”exact” solution, in order to amount the
error made with scheme III and with the pratical approach. Also in this case it
is evident that the error made with scheme III is confined near the boundary and
that the enlarged zone requested by the latter is smaller than the one needed by
the practical approach. Moreover, the latter approach seems to give a numerical
solution that does not agree very well with the one obtained using scheme I. In
particular, we point out big differences also far from the artificial sections, in
particular at the bifurcation near the wall (see Figure 2.60).

Figure 2.55: Computations in 3D: carotid solution. Velocity field obtained with
scheme I, t = 0.195 s, ∆t = 0.0075 s.

We point out the influence of the geometry on the solution of the Navier-
Stokes problem. In Figure 2.61 and 2.62 the velocity field at the inlet of the
carotid bifurcation computed with scheme I and imposed as parabolic, respec-
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Figure 2.56: Computations in 3D: carotid solution. Velocity field obtained with
scheme III, t = 0.195 s, ∆t = 0.0075 s.

tively, are shown. Let us notice the asymmetry of the velocity profile recovered
without prescribing it using scheme I. Therefore, for a non-cylindrical domain,
the prescription of a parabolic velocity profile or even of the Womersley solution
as Dirichlet boundary condition, as suggested in [79], leads anyway to an error
due to the effect of the geometry.
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Figure 2.57: Computations in 3D: carotid solution. Velocity field obtained with
the practical approach, t = 0.195 s, ∆t = 0.0075 s

Figure 2.58: Computations in 3D: carotid solution. Velocity field obtained with
scheme I, t = 0.225 s, ∆t = 0.0075 s.

109



Figure 2.59: Computations in 3D: carotid solution. Velocity field obtained with
scheme III, t = 0.225 s, ∆t = 0.0075 s.

Figure 2.60: Computations in 3D: carotid solution. Velocity field obtained with
the practical approach, t = 0.225 s, ∆t = 0.0075 s

110



Figure 2.61: Computations in 3D: carotid solution. Velocity field at the inlet
obtained with scheme I, t = 0.195 s, ∆t = 0.0075 s.

Figure 2.62: Computations in 3D: carotid solution. Velocity field at the inlet
prescribed with the practical approach, t = 0.195 s, ∆t = 0.0075 s.
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Chapter 3

Applications to Haemodynamics

3.1 Introduction

3.1.1 Outline of the chapter

In this chapter we present three applications of some of the algorithms proposed
in Chapter 2 to computational haemodynamics. As already pointed out, this
field has mainly inspired and justified the research of new techniques for the
prescription of a flow rate boundary condition.

In Section 3.1.2 we present a brief introduction to the computational haemo-
dynamics, pointing out the role it has played in the last years in the bioengineering
comunity. Moreover, we give some basic facts about the modeling of blood in
rigid domains.

In Section 3.2, we present a first application. In particular, in the clinical prac-
tice the non-invasive measure techniques estimate indirectly the flow rate through
a direct measure of the maximum velocity. In fact, thanks to some haemodynam-
ics hypotheses (based on the assumption of parabolic velocity profile) it is possible
to compute the flux starting from the maximum velocity. Nevertheless, these hy-
potheses lead to large measurements errors in many haemodynamics conditions.
Thanks to the right prescription of a flow rate boundary condition on a surface
Γ, it was possible to collect a set of numerical results linking the shape of the
computed velocity profile on Γ to the pulsatility of the hearth action. In this way,
we could estimate the relationship between the flow rate, the maximum velocity
and the pulsatility. By resorting to a least square approach, we could propose
formulae for the estimation of the flow rate starting from the maximum velocity
that highlight a better fitting with the real value. It is clear that this improve-
ment is possible only thanks to the right prescription of a flow rate boundary
condition. Otherwise, the linking between the flux and the maximum velocity
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would be faked.

In Section 3.3 we consider the flow rate problem in a multiscale simulation of
the cardiovascular system. In this context, different models with different spatial
detail are matched together in order to obtain a description of the whole cardio-
vascular net. In particular, a three (or two) dimensional domain in which we are
interested to compute the pointwise velocity or pressure field, is coupled with one
or zero-dimensional models that deals only average informations. It is clear that
at the interface of this coupling, the exchange of information between the three
(two) dimensional and the reduced model allows to prescribe suitable boundary
conditions in both the directions. However, the reduced model could give only
an average datum (like the flow rate). In particular, we propose the numeri-
cal results obtained by coupling a cylindrical domain with two zero-dimensional
models of the cardiovascular system.

Finally, in Section 3.4 we consider the motion of the blood in compliant do-
mains. In particular, we propose a new strategy in order to couple the Navier-
Stokes equations with a simple law for the vascular wall, leading to very good
performances in terms of CPU times. Moreover, we propose the prescription of
suitable outflow boundary conditions that allows to reduce the reflexions induced
by the ondulatory movements of the wall. Finally, we present numerical results
obtained applying the scheme I, proposed in the previous chapter for the pre-
scription of a flow rate, to the simulation of a case in which the vascular wall is
assumed to be compliant.

3.1.2 Basic facts in haemodynamics

In recent years there has been a growing interest in medical and bioengineering
community in using of numerical simulations of biological systems and devices
(see e.g. [66, 17, 18, 54]). In particular, cardiovascular pathologies have a relevant
socio-economic impact in Western countries and this has motivated extensive
investigations in haemodynamics by means of Computational Fluid Dynamics
(CFD). This tool can give some important informations about the fluid-dynamics
of the blood, in particular about some meaningful physical and clinical quantities
hardly measurable so far. For instance, while the flow rate in a vessel is a quantity
quite easy to be measured in standard clinical practice, the velocity field can be
obtained only by application of expensive techniques, like the nuclear magnetic
resonance (NMR). Not to mention specific quantities like the shear stress, which
is practically impossible to be measured directly. These quantities can now be
calculated by numerical simulations carried out on real geometries obtained by
three-dimensional reconstruction.

To be more precise, there are different levels of impact of numerical simulations
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in haemodynamics. Firstly, computational haemodynamics aims at supporting
the understanding of the on-rise and the development of pathologies. For ex-
ample, numerical simulations of the different pulmonary artery bandings in new
born babies affected by left ventricule hypoplasia have clarified the impact of
the banded vessel profile on the shear stress and provided a quantitative expla-
nation of the observed follow up on the patients (see [9]). Another issue is the
design of medical devices. For example, since 30 years it is a common practice
in cardiology to use stents in order to open a stenosis of a vessel. A stent is a
small, lattice-shaped, metal tube that, inserted permanently into an artery, helps
hold open it so that blood can flow through it. In particular, drug-eluting stents
contain drugs that potentially reduce the possible inflammatory reaction of the
vascular walls. In the design of drug-eluting stents, the role of numerical simu-
lations in setting up a coating film ensuring a correct drug delivery is relevant
(see [57, 80]). Another example is given by numerical simulations for comparing
different possibilities of a surgical intervention in pediatric heart diseases, pro-
viding practical indications for the surgeon (see [33]). A third kind of task for
the computational haemodynamics is the identifications and the optimization of
some physical parameters. Thanks to the possibility to solve inverse problems, it
is possible to devise a numerical solution which fulfills some prescribed optimality
criteria. For example, shape optimization techniques are applied to coronary by-
pass anastomosis in order to choose the post-surgery configuration which reduces
the risk of operation failure (see [52]). For a more complete and detailed review
of the applications of computational haemodynamics, see [18].

From the physical point of view, blood is a complex suspension of several par-
ticles such red and white cells and platelets in an acqueos solution called plasma
(see Figure 3.1). Its motion has a pulsatile nature, due to the action of the
heart, in deformable domains. The basic time scale in this context is given by
the heart beat (about 0.8 s), in which we may recognise an initial phase called
systole (about 0.3 s) when the aortic valve is open and the blood is thrusted
into the arterial system, followed by the diastole initiated by the closure of the
aortic valve. Fast transient are therefore a relevant feature of blood flow (see
Figure 3.2). Moreover, vascular walls have complex and variable mechanic
characteristics (e.g. inelasticity, anisotropy, etc). Due to these complexities, the
mathematical-numerical modeling of the blood needs some simplifying assump-
tions. First of all, blood can be considered as an incompressible homogeneous
fluid. Moreover, if we restrict our attention to large vessels (radius≥ 0.1 cm) and
in non-pathological situations, the rheology of the blood can be assumed to be
Newtonian, i.e. the constitutive law between internal stress and deformation is
linear (see Section 1.2). In fact, only in small vessels as the capillaries the dimen-
sions of the particles are such to modify the rheology (see e.g. [17, 54]). Under
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Figure 3.1: Red and white cells and platelets in plasma.

Figure 3.2: Pressure in left ventricle and in aorta: we detect the systole and the
diastole.

these hypotesis, the behaviour of the blood can be modeled starting from the
mass and momentum conservation laws, leading to the Navier-Stokes equations
for an incompressible Newtonian fluid (see Section 1.2). In particular, in Section
3.2 and 3.3 we consider blood flow in rigid domains. This assumption is quite
acceptable in many applications (see [48]), even if in the last year a lot of work
investigated numerical techniques for the fluid-structure interaction problem (see
[42],[12]). Following these lines, in Section 3.4 we consider compliant vessels.

3.2 Estimation of flow rate in haemodynamics

measures

In this section, we present an application of the methodology described in Chapter
2 for the prescription of a flow rate boundary condition to a case of clinical
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interest. These results have been presented in [50].
The correct knowledge of the blood flow rate Q in a vascular district is a major

issue in many clinical situations for estimating the perfusion state of a certain
tissue and for decision-making when a cardiovascular disease occurs. For example,
the evaluation of the flow reserve, which is the ratio between the maximal flow
obtained in vasodilation conditions and the baseline conditions, is one of the
most important parameters used to characterize the haemodynamics impact of
a luminal obstruction. In principle the knowledge of the whole velocity field is
needed for the computation of the flow rate Q on a section Γ, since

Q =

∫

Γ

u · n dγ. (3.1)

However, this information cannot be obtained in ordinary Doppler velocimetry
analysis. A different way for representing Q is to resort to a mean velocity value
Ṽ such that

Q(t) = Ṽ (t)A(t), (3.2)

where A is the measure of Γ. The problem with this formulation is still that Ṽ
cannot be directly measured, therefore it is currently estimated by the measure
of the maximum value of velocity VM on Γ by means of an appropriate relation
linking VM to Ṽ . In particular, it is usually assumed (see [10]) that

Ṽ =
1

2
VM . (3.3)

This equation stems from the hypothesis of a parabolic spatial profile for the
velocity. According to this assumption, blood is considered a steady, laminar
Newtonian fluid in a cylindrical vessel. As also pointed out in Section 2.6, in
real situations, blood flow is far from fulfilling these features. Several works (see
e.g. [60, 47, 63, 49]) pointed out that a non parabolic profile can be computed in
simulating realistic conditions even when the considered morphologies were the
same of those studied in the validation protocol of the Doppler guide wire (see
e.g. [10, 62]).

In particular, the relevance of blood pulsatility on velocity profiles has been
clearly pointed out since a long time by [78] and among the others, we quote
[27, 41]. These works highlight that the hypothesis that blood is quasi-static (i.e.
that at each instant the velocity profile is the same as for a steady fluid featuring
the flow rate prescribed at that instant) is not realistic, in particular when the
Womersley number

W = r
√

2πf/µ =
√

2Af/µ

increases. In the previous definition r =
√
A/π is the vessel radius, f the fre-

quency of blood impulse and µ the blood viscosity
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In order to obtain a more realistic relation linking VM to Ṽ taking into account
the pulsatility of the blood flow rate, a first possibility is to utilize the analytical
relationship that [29] proposed for a cylindrical domain for a sinusoidal signal.
This approach can be extended to general physiological waveforms by application
of the effects superimposition principle that holds for linear problems. However,
this approach has two major drawbacks. On one hand it has been devised for
cylindrical morphologies and its extension to more realistic geometries seems
not trivial and somehow problematic. On the other one, the problem at hand is
driven by the non-linear Navier-Stokes equations, so the effects superimposition is
strictly non applicable. When the Reynolds number increases, i.e. when the non
linear convective term becomes more relevant, this can induce some inaccuracies.

For these reasons, alternatively some works developed different relations be-
tween the maximum and the mean velocity for specific cases, using Computa-
tional Fluid Dynamics (CFD). In this context, approximations have been found
in [45, 46] for the case of the venosus ductus and in [49] for coronary Y-graft
bypass.

In [50], we propose a general CFD-based approach for improving blood flow
estimates from maximum velocity measures, generalizing formula (3.3). In prin-
ciple, we could think to extend this formula by introducing a relation of the
form

Ṽ = g(VM , r, f, µ, . . .),

where all significant parameters (such as the vessel curvature or torsion) can be
included for improving the accuracy of the mean velocity. The specific features
of the flow patterns in a vascular district, once boundary conditions have been
assigned, are basically the morphology, the pulsatility and the rheology. On one
hand, one would set up an accurate equation linking the mean and the maximum
velocities, taking into account all these aspects. On the other hand, the usage of
this equation is subordinated to the possibility of getting reliable estimates of all
these features in the clinical practice. As a reasonable compromise between the
accuracy and the feasibility, we summarize the dependence on all these features
by resorting to the Womersley number W . As a matter of fact, we introduce the
relation

Ṽ = g(VM ,W ), (3.4)

establishing a link between the Ṽ (and then the flow rate) and VM as a function
of the Womersley number W . In this way, we synthetically account for the radius
of the vessel, the blood viscosity and in particular for the pulsatility. W can be
in practice estimated on the basis of available clinical measures. We actually are
assuming that it is possible to define locally a vessel radius. This will be the
only geometrical parameter in our equation. More complex (and more difficult
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to implement) equations could be considered as possible future development.
Function g will be fixed by specifying some parameters, depending on its

specific functional form. The quantitative determination of these parameters can
be carried out by fitting available data with a least squares approach. These data
could be provided by “in vitro” measures taken in realistic experimental set up.
Alternatively, fitting can be carried out by exploiting numerical simulations (see
[46, 49]). The direct derivation of a unique, exhaustive formula for the estimation
of the flow rate in the whole Womersley number physiological range, would be
optimal from the operative point of view. Nevertheless, we found that the fitting
procedure brought to an inaccurate unique formula. Therefore, for the sake of
accuracy, we decided to consider two different situations representative for small
and medium/large vessels (see Figure 3.3) and to devise for each one a different
equation (3.4). We address separately one computational protocol in each case.

Σ

Γin

Ri Ωi
Γout

Ω1 : R1 ≤ 0.12cm

Ω2 : R2 > 0.12cm

Figure 3.3: Reference domains Ωi.

1) Small vessels. Small vessels are represented by a cylindrical domain Ω1 with
R1 ≤ 0.12cm. In this class of vessels, a physiological range for the Womersley
number is (see [41, 75, 6, 77]):

W ≤ 3.1.

A possible general formulation for the equation (3.4) to be used in the case of
small vessels is:

Ṽ = g1(VM ,W ) =
1

2
VM

(
1 + a1W

b1
)
, (3.5)

where a1 and b1 are the parameters to be fitted. This parametric representation
has been selected as a power law generalization of the steady (W = 0) equa-
tion (3.3). In the numerical simulations carried out for fitting a1 and b1, we
distinguished two situations that can be referred to “small vessels”:

a) small arteries

b) coronaries.
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The two cases are considered separately because the flow rate waveform in the
coronaries is by far different than the one in the other small arteries due to the
heart squeezing. This actually means that in the fitting procedure we selected
two different set of test cases adopting two different flow rate waveforms. In
particular, for small arteries we choose the profile reported in Figure 3.4, left,
representing the flow rate in the vertebral artery, following [73]. For the coronary
fitting, waveform is reported in Figure 3.4, right, taken from [47].
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Figure 3.4: Vertebral (left) and coronaric (right) flow waves with f = 1Hz
imposed in Ω1

2) Medium/Large vessels. Medium and large vessels are represented by a value
of radius R2 > 0.12 cm in the Womersley number range (see [41, 75, 6, 77]):

2.70 ≤ W ≤ 15.

In this case, we found that an appropriate parametric representation of (3.4) is:

Ṽ = g2(VM ,W ) =
1

2
VMb2 arctan(a2W ), (3.6)

being a2 and b2 the parameters again. In order to fit them, we used the flow
rates in Figure 3.5, representing the flux in the iliac and in the aortic artery
respectively (see [44]).

For each of the considered situations (small and medium/large vessels), pa-

rameters can be fitted if several numerical estimates of data in the form (Ṽ , VM ,W )
are available. Since we aim at setting up a computational protocol similar to the
clinical one, in which VM is the maximum velocity in space and in time, we focus
our attention on the peak velocity instant (see Figure 3.6). Data for the fitting
are taken at that instant.
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Figure 3.5: Iliac (left) and aortic (right) flow waves with f = 1Hz imposed in
Ω2

Computed Profile

Parabolic ProfileVelocity peak

Figure 3.6: Overall vision of the computational protocol: at the peak instant the
comparison between the parabolic profile and the computed is done in order to
evaluate and correct the flux estimation.

We solved the Navier Stokes equations in a computational domain like the
one showed in Figure 3.3 (using R1 = 0.06, 0.12 cm and R2 = 0.24, 0.4, 0.5, 0.7
cm) for a total of 182 simulations in the range of W illustrated in Figure 3.7. In
particular, we impose a no-slip condition on the physical wall Σ (i.e. u|Σ = 0),
corresponding to the assumption of rigid walls, and null normal stress on the
outlet Γout. At the inlet, we would like to prescribe the flow rate (3.1) specified by
the waveforms reported in Figures 3.4 and 3.5. In the context of the present work,
the prescription of a velocity profile would be equivalent to select a priori for each
value of W a functional relation like (3.4) and this would reduce the significance
of numerical simulations and definitely the accuracy of (3.4) in recovering the
flow rate from the maximum velocity. Therefore, we resort to scheme I for the
numerical resolution (see Section 2.5.3). The potential bias in using numerical
simulations specifying the velocity profile can be therefore avoided. Simulation
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parameters (viscosity and frequency) have been varied in order to perform two
simulation for each imposed flow rate at each W ; in particular the blood viscosity
changes in the discrete set (0.022, 0.03, 0.035, 0.04) Poise according to [6, 75],
while the frequency in the range (0.6, 3) Hz according to [77]. Once large data

set made of vectors of evaluations (Ṽ , VM ,W ) for the prescribed Q are available
from numerical simulations, parameters in (3.5), (3.6) are obtained by means of
a non-linear least-square fitting optimization. In particular, we have used the
Least Squares module present in the package Scientific-Python. We do not dwell
here with further mathematical details. The interested reader is referred to [34].

More data can be included in tuning parameters in (3.4) and more accurate
will be the estimates obtained. In particular, this means that if we restrict the
range of validity of (3.4) to specific situations and perform specific parametric
fittings, we will obtain a set of equations very accurate for the situations they are
devised for. The two formulae (3.5) and (3.6) will be therefore very accurate in
the appropriate range of Womersley numbers. In principle, more accuracy could
be achieved by furtherly specializing the validity of each formula. For instance,
by separating the fitting for small arteries and coronaries, two set of parameters
would be obtained for equation (3.5), each of them seemingly very accurate for
the case of small arteries and coronaries respectively. The drawback is however
that, in practice, it could be difficult to manage three, four (or even more) differ-
ent equations for estimating the flow rate. A unique formula will be less accurate
but easier to use in the clinical practice. For this reason, after considering the
two cases presented above seprately, we devised a unique formula spanning the
whole range of physiological Womersley numbers. The set up of a unique formula
can be achieved in different ways. Here we simply decided to introduce a suit-
able weighted linear combination of the two functions g1(VM ,W ) and g2(VM ,W ).
More precisely, in presenting the two cases considered we introduced an overlap-
ping subdivision of the range of Womersley numbers (see Figure 3.7). Hereafter,
we will say that a function gi (i = 1, 2) is “active” on an interval of this subdivi-
sion, if it has been set up in a Womersley numbers range including that interval.
We have therefore the following subdivision:

Interval 1 For W < 2.70 the only active function is g1;

Interval 2 For 2.70 ≤ W < 3.1 the active functions are both g1 and g2;

Interval 3 For 3.1 < W ≤ 15 only g2 is active.

A unified function g can be therefore obtained by forcing g to be equal to the
only active function in the Intervals 1, 3 and to a linear convex combination of
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153.12.70

Figure 3.7: Subdivision of the whole range of Womersley numbers into intervals
with the specification of the different active gi (i = 1, 2).
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the two active functions on the Interval 2. This means that we set:

Ṽ = g(VM ,W ) =





g1 W ≤ 2.7
wg1 + (1 − w)g2 2.7 < W ≤ 3.1

g2 3.1 < W ≤ 15
(3.7)

The weight function w(W ) is represented in Figure 3.8: it is infinitely smooth
function equal to 1 on the left end point of Interval 2 and 0 on the right one,
given by:

w = e
(W−2.7)2

(W−2.7)2−(3.1−2.7)2 .

Equation (3.7) is the formula of the class (3.4) we are going to validate in the
next Section.

The fitting procedure for the two cases considered leads to the following esti-
mates of the parameters in (3.5) and (3.6):

{
a1 = 0.00417, b1 = 2.95272
a2 = 1.00241, b2 = 0.94973

(3.8)
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The performances of the proposed formulae have been tested in three cases. In
each case, we compare the mean velocity estimated by (3.5), (3.6) or (3.7) with
(3.8), starting from the maximum velocity computed with CFD, with the exact
prescribed value and with the parabolic estimate (3.3).

In the first test, we referred to the same conditions used for fitting the parame-
ters, as a consistency test of the least square approach adopted for the parameters
estimation. In Figures 3.9 and 3.10 we report the relative errors on the flow rates
estimated by (3.5), (3.6), (3.7) with (3.8) and by (3.3). As was to be expected in
this favorable case, in which the haemodynamics conditions do actually coincide
with the one used for the fitting, the improvement induced by the new formulae
is relevant for all the cases considered. It is worth pointing out that the accuracy
of the estimate based on (3.7) reduces in the Interval 2 (see Figure 3.7) where
the two functions g1 and g2 are both active, in particular with respect to the
corresponding estimate given by the gi alone in the associated intervals. This is
still to be expected, since for the specific case in which a function gi has been
devised it works obviously better. In fact, the unified formula in this range does
not show a significant improvement with the respect to (3.3).
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Figure 3.9: Relative errors between the estimated fluxes and the imposed ones
for the geometry Ω1 with the vertebral (left) and the coronary (right) flow waves.

In the second test cases set, we retained the same geometries used for the
parameters fitting and changed the flow rate waveforms prescribed at the inlet.
In particular, we compare the fluxes estimated by (3.7) with (3.8) and by (3.3)
with the exact prescribed flow rate. In particular, we firstly imposed the flow wave
reported in Figure 3.11, found in a proximal LITA (Left Interior Thoracic Artery)
used as an aorto-coronary by-pass, at the inlet of a domain Ω1 with radius equal to
0.12 cm (see [49]). Secondly, we imposed the physiological flow rate perfusing the
renal artery reported in Figure 3.12, left, at the inlet of a domain Ω2 with radius
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Figure 3.10: Relative errors between the estimated fluxes and the imposed ones
for the geometries Ω2 with iliac (left) and by the aortic (right) flow rate.
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Figure 3.11: Proximal LITA inlet flow rate waveform

equal to 0.4 cm (see [41]). Then, we imposed the physiological flow rate perfusing
the brachialis artery reported in Figure 3.12, right, at the inlet of a domain Ω2

with radius equal to 0.24 cm (see [44]). In Table 1 we report the relative errors
introduced by the two formulae in these three cases. We point out that in four
of the eleven cases the Womersely number is in Interval 2, Figure 3.7, where the
unified formula differs from g1 and g2. The improvement introduced by the new
formula is still relevant.

In the last class of benchmarks, we applied (3.7) to completely different ge-
ometries and flow rate waveforms. In particular, we refer to the numerical results
performed with scheme I presented in Section 2.6.2 and obtained in the realistic
carotid model reported in Figure 1.3. This geometry is by far different from the
cylindrical morphologies used for the parameters assessment. We prescribe the
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Figure 3.12: Renal and brachialis inlet flow rate waveforms

physiological flow rate shown in Figure 2.43 (left) both at the inlet and at the
internal outlet of the carotid. The results in Table 2 show that the relative errors
in estimating the flux from the maximum velocity using (3.7) with (3.8) are really
less than the estimates based on (3.3).

The relative error associated with the prediction formula (3.7) in these val-
idation test cases, is bounded in a very small range as a consequence of the
accounting for the pulsatile nature of blood (mean = 3.73%, stdv = 2.51%, ver-
sus mean = 22.01%, stdv = 11.08% using (3.3)). Moreover, we point out that
the magnitude of the error using (3.3) depends on the shape of the waveform
perfusing the vessel. The same does not seem to hold for (3.7) (see Figure 3.9
and 3.10). Hence, formula (3.7) seems to be robust with respect to the shape of
the flow rate.

The choice of cylindrical domain for building formula (3.7) and for testing its
validity versus (3.3) has been done in order to isolate the effect of pulsatility on
the velocity profile. However, we point out that this approach can be extended
in order to build new formulae taking into account different (realistic) geome-
tries. In particular, on one side, we can remove some simplifying assumptions
made in order to build a formula like (3.4); for instance, simulations in curved
pipes or with compliant walls could be carried out for a finer or more specific
formula. Another possibility is to introduce new independent variables in the
relation between the maximum and the mean velocities, beyond the Womersley
number. For instance, one could account here for the possible curvature k or
other morphological features, by devising a formula in the form:

Ṽ = g(VM ,W, k, ...).

Other, more complicates, independent variables can be chosen in this context,
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W Estimate based on (3.3) Estimate based on (3.7)
Proximal LITA 1.7366 1.24% 0.86%

2.2673 4.20% 0.28%
2.868 9.09% 3.64%
3.0419 9.64% 6.68%

Renal 5.3594 18.34% 4.12%
7.5793 23.64% 4.43%
8.8676 25.38% 3.38%

Brachialis 2.868 18.42% 9.29%
3.0419 18.17% 1.32%
5.3594 32.50% 11.09%
7.5793 38.34% 15.67%

Table 3.1: Relative errors for the proximal LITA, renal and brachialis flow wave
test case.

Inlet Outlet I Outlet II
W 7.74 5.21 4.90
Radius (cm) 0.5 0.337 0.317
Vpeak (cm/sec) 204.47 339.55 132.15
Imposed flux (cm3/sec) 115.33 86.97 28.36
Relative error with parabolic formula (%) 31.27 30.56 26.69
Relative error with correction formula (%) 4.61 8.88 4.62

Table 3.2: Application of (3.7) in a numerical model of carotid bifurcation

with the constraint that they should be (easily) measurable in order to be used
for a real-time estimates of the flow rate.

An extensive “in vitro” and “in vivo” validation activity is now mandatory
as a necessary phase for confirming the strong improvements found here, before
incorporating this formula into clinical devices.

3.3 Multiscale simulation of the cardiovascular

system

Prescribed flux problems arise also in the (geometrical) multiscale modelling of
the circulatory system. In fact, the cardiovascular system has a multiscale na-
ture, since local phenomena, such as the perturbation of flow pattern in a specific
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vascular region, are strictly related to the global features of the whole circulation.
Nevertheless, a global 3d description of the cardiovascular system is computation-
ally impossible. Therefore, we focus on a 3d domain of interest, embedded in a
reduced model (easy to solve) of the cardiovascular system. In this way, a local,
accurate, 3D description of blood flow by means of the Navier-Stokes equations in
a specific artery is coupled with a systemic, 0D, lumped model of the remainder
of circulation (see [16, 56, 51, 33]).

To this aim, the arterial tree is split into elementar districts. For each one
of these, starting from the 3-dimensional Navier-Stokes equations in moving do-
mains, simplified equations can be deduced for the beahviour of blood. In par-
ticular, an appropriate average over the space variables is considered. We point
out that the reduced model is strictly related to the boundary conditions on the
artficial sections for the original 3d problem. For example, for a vascular vessels
it is a common practice to consider a compliant cylinder as elementar district
(see Figure 3.13). To be more concrete, let us prescribe the velocity field at the
inlet Γin and the normal stress on Γout. Therefore, let us write the Navier-Stokes
equations in moving domains and let us integrate in space both in the radial and
in the axial direction. We obtain the reduced model in Figure 3.14 (see [51]). We
point out the analogy between the electrical and fluid-dynamics global quantities.
In particular, the electrical counterpart of the flow rate and of the pressure are
the current and the voltage, respectively. This reduced model is described by a
system of two Ordinary Differential Equations (ODE) for the unknowns pressure
P1 and flow rate Q2, while P2 and Q1 are known from the prescribed boundary
conditions in the 3d original problem. Therefore, since P1 and Q2 are the state
variables of the electric net, it is necessary for the well posedness of the ODE
system that a compliance is at the interface with P1 and an inductance at the
interface with Q2. If we start from different boundary conditions, we obtain differ-
ent state variables and therefore different reduced models (see Figures 3.15-3.17).

A possible set of approximate values for amounting the electrical/geometrical

z

Γ

Γin

out

r Ω

Figure 3.13: Reference cylinder Ω
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Figure 3.14: LP model of a cylinder when a Dirichlet boundary condition is
prescribed on Γin and a Neumann boundary condition is prescribed on Γout
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Figure 3.15: LP model of a cylinder when a Neumann boundary condition is
prescribed on Γin and a Dirichlet boundary condition is prescribed on Γout

component of the four reduced model, is (see [51]):





R =
8µl

πr4

L =
ρl

πr2

C =
2πr3(1 − σ2)l

Eh
,

(3.9)

where l is the length of the cylinder, σ is the Poisson ratio, E is the Young mod-
ulus and h is the thickness of the external wall. Nevertheless, different authors
proposed different values.

Moreover, in order to describe the heart action, in the electric/hydraulic anal-
ogy every valve beahviour is suitable modelled by a diode for the current according
to the value of the applied voltage drop. Moreover, its pulsatile action is modelled
with a pressure generator and the variable properties of the heart wall with an
elastance changing in time (see Figure 3.18 and [30]).

Collecting the LP models of various districts and compartments, we obtain
an electrical net, that, from the mathematical point of view, could be written as
a system of ODE:

{
dy

dt
= A(y, t)y + rH(y, t) + c(t)

y(0) = y0,
(3.10)
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Figure 3.16: LP model of a cylinder when Neumann boundary conditions are
prescribed on both the artificial sections
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Figure 3.17: LP model of a cylinder when Dirichlet boundary conditions are
prescribed on both the artificial sections

where y is the vector of the state variables, A the matrix that takes into account
the relations between the state variables and the electrical components (resis-
tances, compliances, etc), rH and c(t) the vectors that take into account the
heart action and the boundary conditions, respectively.

As pointed out, in the multiscale framework a 3d (or 2d) Navier-Stokes (NS)
solver is coupled with a 0d lumped parameter (LP) model of the whole (or a part
of) arterial network. From the numerical point of view, it is a common practice
to resort to a domain decomposition technique, in which the 3d and the reduced
models are solved alternatively and the matching conditions become boundary
conditions for the two models. In particular, the LP model provides the boundary
data to the NS solver and receives from the latter a forcing term. In this way, at
each artificial section linked with the LP model, the 3d solver receives the flux
(i.e. the current) or the mean pressure (i.e. the voltage) from the 0d model and it
prescribes to the latter the mean pressure or the flux, respectively (see [16, 13]).
Coupling a 3d solver with a suitable electrical net is the only way to prescribe
realistic (global) boundary conditions on the artificial sections, if no data from
medical measurements are available (see [33]). For a mathematical analysis of
the 3d-0d coupling see [56].

In the sequel we present the numerical results of two multiscale simulations
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Figure 3.18: LP model of heart

involving flow rate boundary conditions for the 3d solver.
The scheme shown in Figure 3.19 represents a simplified circulatory system,

where the pressure generator describes the action of the heart. The boxed part
is solved by a NS axi-symmetric solver (LifeII). In this scheme, the LP model
computes the flow rate to be assigned as boundary condition at the inlet of the
NS solver and the latter prescribes the computed pressure drop to the net. As
a validation, we solve a case in which the heart pumps a periodic pressure both
in the multiscale framework (with both the treatment of the viscous term, see
Section 2.2) and in the complete LP model, where the NS model is replaced by its
LP analogous thanks to (3.9), featuring C = 0 since we are considering rigid wall
(see Fig. 3.19). We observe that from the viewpoint of systemic simulations the
results are in good agreement (see Table in Figure 3.19), having the possibility
in the multiscale framework of detailing the local blood flow features with the
3D model (see [70]). In particular, the results seem to be slightly better for the
Curl-curl formulation.

In the second simulation we consider a more realistic representation of the
cardiovascular system, taken from [11] and shown in Figure 3.21. This lumped
network includes the two ventricles, the systemic tree and the lungs and it is
coupled with a 3d model of a part of the discending aortic compartment. In par-
ticular, the lumped parameters R5, C4, R6, L3, C5, L4, R7, C6 and R8 are related to
the pulmonary tree, S1, S2, S3 and S4 represent the aortic, tricuspid, pulmonary
and mitral valves, respectively. Moreover, a pressure source is related to both
the ventricles: {

UL(t) = UL0A(t)
UR(t) = UR0A(t)

where UL0 and UR0 are suitable constants and A(t) is the periodic activation

131



R L

R L

CC

R L

CC
1

1L1R

2 34

2 2

3 3

4L Pressure
Flux

0.1274

LP

0.0593
0.1246

MultiscaleMultiscale
(curl)(grad)

0.0570 0.0569
0.1234

Figure 3.19: Simplify electrical net modelling the cardiovascular system. In the
dotted boxes the geometry for the NS solver (up) and its analogous in term of
LP model (down). In the table, the maximum values of flux and pressures in the
three cases.

function shown in Figure 3.20. The elastances related to each ventricles are
defined as {

EL(t) = ELD + ELSA(t)
ER(t) = ERD + ERSA(t)

with ELD, ELS, ERD and ERS suitable constants. The other lumped parameters
correspond to the systemic part of the cardiovascular system.
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Figure 3.20: Activation function A(t).

As in the previous multiscale simulation, the LP model computes the flow rate
to be assigned as boundary condition at the inlet of the NS solver (LifeV) and
the latter prescribes the computed pressure drop to the net. Figures 3.22 show a
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Figure 3.21: Electrical net modelling the cardiovascular system

comparision between the pressure in correspondance of the compliance Cs1 (left,
indicated in Figure 3.21 as P0D) and of the vascular vessel (right) computed in the
multiscale framework, with the ones obtained in a whole 0d simulations. We point
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Figure 3.22: Comparision between the numerical results obtained in the multi-
scale and in the 0d simulations. Pressure in correspondance of the compliance
Cs1 (left) and of the vascular vessel (right).

out that the numerical results are in good agreement in the case of the pressure
in correspondance of the compliance Cs1. On the contrary, the results concerning
the pressure in correspondance of the vascular vessel are quite different. This
means that, in order to obtain matching numerical results, the parameters of the
electrical net need to be calibrated in more suitable way. This is a possible future
work starting from the present one.
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3.4 Fluid-structure interaction problem

In this section we remove the hypothesis of rigidity of the wall of the vascular
vessel. In particular, we consider the problem of prescribing the flow rate in a
2d compliant domain, where the blood dynamics is described by coupling the
Navier-Stokes equations with a model for the structure. The vascular wall has
a very complex nature and devising an accurate model for its mechanical be-
haviour is quite difficult. Its structure is indeed formed by many layers with
different mechanical characteristics (see e.g. [22]). Some simplifying hypotheses
are therefore mandatory. In particular, arterial tissue is quite often assumed to
be homogeneous. Moreover, since the displacements could often be considered
small, we assume that its beahviour can be described in terms of linear elasticity
(see [17]). In particular, in this context, we consider an algebraic one-dimensional
law. Regarding the fluid problem, we can not use an Eulerian approach, as done
in the previous cases. In fact, referring to Figure 3.23, since no slip conditions
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Figure 3.23: Reference (left), ALE (center) and Lagrangian (right) fluid domain.

are prescribed on the physical boundary Γw
t , we would like to use Lagrangian co-

ordinates near the wall. In this way the velocity of the fluid and of the structure
are equal on Γw

t . However, a fully Lagrangian approach is not suitable, since we
would like that, far from the wall, the points of the fluid domain do not move, so
that the domain does not warp (see Figure 3.23, right). In order to merge these
requirements, we resort to the Arbitrary Lagrangian Eulerian (ALE) approach
(see [42, 17]), that we are going to introduce briefly. The idea is based on moving
the points of the fluid domain in an arbitrary way, with the constraint that the
points on Γw

t move with the structure and the points on Γin
t and Γout

t do not move
in the normal direction. This can be done, for instance, by solving a Laplace
equation (harmonic extension):





−4w = 0 in Ωt

w|Γw
t

=
∂η

∂t
(w ·n)|Γin

0 ∪Γout
t

= 0

(∇w τ )|Γin
0 ∪Γout

t
= 0,

(3.11)

134



beingw the velocity of the points of the domain and η the structure displacement.
The problem given by (3.11) allows one to build the domain Ωt, for all t > 0
(Figure 3.23, center) and, at the discrete level, it allows to map the initial mesh
onto the current configuration. Similarly to the Lagrangian case, the ALE time
derivative of a scalar quantity f is given by

DAf

Dt
=
∂f

∂t
+w · ∇f.

It is now possible to write the Navier-Stokes equations in Ωt in ALE coordinates
(see [42]): 




DAu

Dt
−∇ · σ + [(u−w) · ∇]u = 0 in Ωt

∇ · u = 0 in Ωt.
(3.12)

where
σ = µ(∇u+ (∇u)t) − pI

is the Cauchy stress tensor and where I the 3 × 3 identity tensor. We point out
that for w ' 0, i.e. far from the wall, we recover the Eulerian formulation, while
for w = u, i.e. on the wall, we get the Lagrangian formulation. Problem given
by (3.12) has to be completed with suitable initial and boundary conditions:





u|t=0 = u0(x)

u|Γw
t

=
∂η

∂t∫

Γin
t

u · n dγ = Q

(σn)|Γout
t

= h,

(3.13)

where h is a suitable outflow condition.
Concerning the structure model, for the sake of simplicity, we consider the

one-dimensional algebraic law

βη = −(σn)|Γw
t

= (pn− µ(∇u+ (∇u)t)n)|Γw
t
, (3.14)

with β a parameter depending on the elasticity property of the vascular vessel.
The non-linear fluid-structure interaction problem is given by (3.11), (3.12),

(3.13) and (3.14). At the discrete level, it is usually solved in an iterative frame-
work, where the fluid and the structure equations are solved separately (see e.g.
[42, 12] and references therein). We point out that (3.13)2 and (3.14) are the
matching conditions at the fluid-structure interface. In particular, the structure
prescribes the velocity as Dirichlet boundary condition to the fluid and the latter
gives the stress at the interface as forcing term to the structure. Let us notice
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that in this context we utilize the ”complete” formulation of the viscous term, so
that the forcing term passed to the structure is the physical stress (3.14).

Here, we propose an alternative strategy that does not need to subiterate (see
[43]). In the sequel, we present this new approach for the augmented flow rate
problem, but we observe that it can be applied to standard boundary value prob-
lems as well. In particular, let us write (3.13)2 and (3.14) after time discretization
(see Section 2.5.1): 




βηn+1 = −(σn+1n)|Γw
t

un+1|Γw
t

=
ηn+1 − ηn

∆t

(3.15)

We point out the use of an implicit Euler formula in (3.15). Combining these two
relations, we obtain:

(σn+1n)|Γw
t

= −β(∆tun+1|Γw
t

+ ηn). (3.16)

Let us set
V t = H1(Ωt).

Therefore, writing the augmented variational formulation of problem given by
(3.12) and (3.13) (see Chapter 2), we obtain, for all v ∈ V t:

1

∆t
(un+1, v) + (σn+1,∇v) + (((un+1 −wn+1) · ∇)un+1, v) + λn+1

∫

Γin
t

v · n dγ =

=

∫

∂Ω

(σn+1n) · v dγ −
∫

Γout
t

hn+1 · v dγ +
1

∆t
(un, v).

Using (3.15) and introducing the notation (1.7), we have

1

∆t
(un+1, v) + aC(un+1, v) + (((un+1 −wn+1) · ∇)un+1, v)+

+b(pn+1, v) + λn+1

∫

Γin
t

v · n dγ = −
∫

Γw
t

β(∆tun+1 + ηn) · v dγ+

−
∫

Γout
t

hn+1 · v dγ +
1

∆t
(un, v).

Therefore, setting

{
W t = {v ∈H1(Ωt) : v|Γw

t
= 0 and (v · n)|Γin

t ∪Γout
t

= 0}
Qt = L2(Ωt)

we obtain the following problem:
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Problem 21 Solve, for each n:

1) (∇wn+1,∇s) = −(Rn+1
g , s) ∀s ∈W t





2)
(un+1

∆t
, v
)

+

∫

Γw
t

β∆tun+1 · v dγ + aC(un+1, v)+

+(((un+1 −wn+1) · ∇)un+1, v) + b(pn+1, v) + λn+1

∫

Γin
t

v · n dγ =

= −
∫

Γw
t

βηn · v dγ −
∫

Γout
t

hn+1 · v dγ +
(un

∆t
, v
)

∀v ∈ V t

b(q,un+1) = 0 ∀q ∈ Qt∫

Γw
t

un+1 · n dγ = Qn+1

whereRn+1
g is aH1(Ωt) function such thatRn+1

g |Γw
t

= un|Γw
t
. Then ηn is updated

thanks to (3.15)2. Observe that, with this strategy, the coupling resorts to a Robin
condition for the fluid problem.

One of the most relevant issues in solving a fluid-structure interaction coupling
is due to the outlet boundary condition. In fact, an arbitrary stress prescribed at
the outlet could produce some non-physical reflections of the waves propagating
in the vessel (see e.g. [42, 15]). In order to avoid this phenomenon, it is possible
to prescribe a suitable absorbing stress condition. A possibility is to couple
the 3d model with a 1d reduced model related to a compliant vessel (multiscale
approach). In this case, the reduced model could act as a suitable, non-reflecting
boundary condition (see e.g. [42, 15]). Here we propose to use the 1d model in
another way. In particular, referring to the compliant cylinder in Figure 3.13,
whose length is L, a simplified 1d model can be obtained integrating at each time
t the Navier-Stokes equations over each section S normal to the axis z of the
cylinder. The 1d model reads, for each t > 0 and 0 < z < L, (see [15, 16]):





∂A

∂t
+
∂Q

∂z
= 0

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+ A

∂p̃

∂z
+KR

Q

A
= 0

(3.17)

where Q is the flow rate through S, A is the area of S, p̃ the mean pressure over
S, the constant KR is a resistance parameter which accounts for fluid viscosity,
while α is definied as

α = A
( ∫

S

u2
z dγ

)(∫

S

uz dγ
)−2

and accounts for the velocity profile over S. For example if α = 1 we are assum-
ing a flat velocity profile. System (3.17) is a system of two equations in three
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unknowns (p̃, Q, A). For its closure, a third equation is provided by a suitable
wall model relating the radial displacement (and therefore the area A) to the
mean pressure p̃. In particular, here we consider a simple algebraic relation (see
[19]):

p̃ = β(
√
A−

√
A0) (3.18)

where A0 is the area of the surface S at t = 0. Observe that (3.18) is an algebraic
law linking the pressure to the wall displacement, analogous to (3.14). Then,
system (3.17) turns out to be hyperbolic and posseses two distinct eigenvalues

ζ1,2 =
Q

A
± c

where

c(A) =
β
√
A

2
The hyperbolic nature of this system allows to capture the ondulatory component
of the axial propagation of the blood in a moving vessel. The corresponding
eigenfunctions are the characteristic variables, given by

W1,2 =
Q

A
±
∫ A

A0

c(τ)

τ
dτ.

We can reduce the reflection’s phenomenon imposing that the characteristic vari-
able coming back is zero on the outflow section (see [42, 43] for more details). In
particular, we obtain the following absorbing boundary condition:

hn+1 =
[(√1

2

∫
Ωt
un · n dγ
2An

out

+

√
β
√
Aout,0

)2

− β
√
Aout,0

]
n, (3.19)

where An
out and Aout,0 are the measure of Γout

t at t = tn and at the initial instant,
respectively.

In the sequel we present the numerical results, obtained with Freefem++,
concerning two test cases. We point out that in both cases, the numerical sim-
ulations highlight that Problem 21 does not need to be solved in an iterative
framework. Therefore, the CPU times related to this approach seem to be very
good, even if further numerical tests are mandatory.

In the first test case, we aim at validating the effect of the absorbing condi-
tion. The computational domain is a rectangle Ωt, whose size in the reference
configuration Ω0 is 15 × 2 cm. Moreover, we set β = 105 cm/s2. We impose at
the inlet of Ωt a pressure impulse

P =

{
104 cm2/s2 for t ≤ 0.005 s
0 for t > 0.005 s.
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In Figure 3.24-3.27 we compare the numerical solutions obtained with (left) and
without (right) prescribing the absorbing condition (3.19). We notice the relevant
reflections of the solution once the wave reaches the end of the domain if a non-
absorbing condition is forced. On the contrary, by imposing condition (3.19), the
effect of spurious reflections is significantly damped.

Figure 3.24: Pressure wave propagation in the half upper domain with (up)
and without (bottom) prescribing an absorbing condition. Before the wave has
reached the outlet of the domain there are no reflections and the two solutions
coincide - t = 0.02 s - ∆t = 10−3, h = 0.1.

In the second test case, we impose the flow rate Q = 1 · sin(2πt) cm2/s at
the inlet of Ωt and we compare the numerical results on different sections with
the Womersley solution in Ω0. In Figures 3.28 the flow rate at different distances
from the inlet of Ωt is shown. In particular, we chose two instants of the period,
such that in the rigid case the flow rates are the same. We point out that the flux
is not the same on all sections in the compliant case. In particular, at t = 1.1 s
(i.e. at the beginning of the cicle, when the flow rate grows up) the flux decreases
moving along the domain. On the contrary, at t = 1.4 s (i.e. when the flow rate
begins to decrease after the peak) the flux increases moving along the domain.
This is due to the fact that the propagation of the flow rate is not instantaneous
as in the rigid case. Figures 3.29-3.33 confirm that the axial velocity profile in
the compliant case features a delay with respect to the Womersley solution for
rigid pipes. In particular, we find a delay of 0.007s at distance 2 cm from the
inlet. Moreover, these figures highlight that the displacment of the vessel wall is
negligible (about 0.2% of the radius).
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Figure 3.25: Pressure wave propagation in the half upper domain with (up)
and without (bottom) prescribing an absorbing condition. - The pressure wave
has reached the outlet of the domain and the reflections start - t = 0.05 s -
∆t = 10−3, h = 0.1.

Let us notice in Figure 3.31, left, the difference between the solutions com-
puted at the inlet. This is due to the boundary effects obtained with the ”com-
plete” formulation of the viscous term. This phenomenon is due to the fact that
the natural boundary conditions associated to (1.7) implicitely prescribe a non-
null tangential velocity at the inlet and at the outlet (see [68] and Chapter 4 for
more details). In Figure 3.34 we compare the solutions obtained in a compliant
and in a rigid domain using (1.7) with the solution in a rigid domain using the
”laplacian” viscous term −µ4u, in particular using (1.6). Observe that the dif-
ferences between the rigid and the compliant solutions at the inlet are mainly
due to the different formulations of the viscous term.
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Figure 3.26: Pressure wave propagation in the half upper domain with (up)
and without (bottom) prescribing an absorbing condition. - t = 0.20 s - ∆t =
10−3, h = 0.1.

Figure 3.27: Pressure wave propagation in the half upper domain with (up)
and without (bottom) prescribing an absorbing condition. - t = 0.50 s - ∆t =
10−3, h = 0.1.
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Figure 3.28: Flow rate at different sections of Ωt - t = 1.1 s (left) and t = 1.4 s
(right). We point out that the flow rate is the same at these two instants in the
rigid case.

Figure 3.29: Sinusoidal flow rate: axial velocity on a radius - distance from the
inlet: 0.0 cm (left) and 0.4 cm (right) - t = 1.1 s - ∆t = 10−3, h = 0.025.

Figure 3.30: Sinusoidal flow rate: axial velocity on a radius - distance from the
inlet: 1.4 cm (left) and 2.0 cm (right) - t = 1.1 s - ∆t = 10−3, h = 0.025.
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Figure 3.31: Sinusoidal flow rate: axial velocity on a radius - distance from the
inlet: 0.0 cm (left) and 0.4 cm (right) - t = 1.4 s - ∆t = 10−3, h = 0.1.

Figure 3.32: Sinusoidal flow rate: axial velocity on a radius - distance from the
inlet: 1.4 cm (left) and 2.0 cm (right) - t = 1.4 s - ∆t = 10−3, h = 0.1.

Figure 3.33: Sinusoidal flow rate: axial velocity on a radius - comparision between
the compliant and the rigid case at the current instant t with the Womersley
solution at t − 0.007s - distance from the inlet: 2.0 cm - t = 1.015 s (left), t =
1.113 s (right) - ∆t = 10−3, h = 0.025.
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Figure 3.34: Sinusoidal flow rate imposed: axial velocity on a radius - distance
from the inlet: 0.0 cm (left) and 2.0 cm (right) - comparision with the solution of
the ”complete” viscous term in the rigid case - t = 1.4 s - ∆t = 10−3, h = 0.1.
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Chapter 4

A ”Dual” Approach based on the
Control Theory

4.1 Introduction

In this chapter we present a new approach for managing the defective boundary
problems that will be presented in [20]. In particular, it is based on the control
theory (see e.g. [2, 37, 1]) and can be considered as the ”dual” of the augmented
formulation presented in Chapter 2. In fact, both these strategies resort to a
Lagrange multipliers approach. In particular, in the augmented formulation the
flux conditions are treated as constraints for the Navier-Stokes equations. Con-
versely, with the new approach, the Navier-Stokes equations are considered as
the constraint to be forced on the defective boundary conditions, formulated on
a minimization problem.

In Chapter 2, we have obtained the augmented formulation for the flow rate
problem. It is worth pointing out that it is possible to find such a formulation for
the mean pressure problem, as well. Nevertheless, it shows a fundamental prob-
lem. In this case the Lagrange multiplier has the physical meaning of constant
normal velocity on the artificial section where the mean pressure is prescribed.
This contrasts the choice of the functional spaces for which the boundary condi-
tions force null velocity on the physical wall. On the contrary, due to the exchange
of the roles between the fluid equations and the defective boundary conditions,
the proposed approach can manage the mean pressure problem as well. In this
sense, the new approach can be considered as a more general strategy for the
implementation of the defective boundary problems.

The outline of this chapter is as follows. In Section 4.2 we give a short
introduction of the control theory applied to partial differential equations. In
Section 4.3 we present the flow rate problem case. In particular, we introduce
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the linear steady case (Section 4.3.1), the linear unsteady case (Section 4.3.2)
and the steady non-linear case (Section 4.3.3). In Section 4.4 the mean pressure
problem case is treated. In particular, we present the linear steady case treating
separately the ”laplacian” (Section 4.4.1) and the ”complete” (Section 4.4.2)
formulation of the viscous term. Moreover, in Section 4.4.3 a different approach
based on the flow rates as control variables is shown. In Section 4.5, we introduce
some numerical algorithms for solving the proposed problem. Finally, in Section
4.6 we present some numerical results.

4.2 General settings of the control problems

The general problem we are going to consider has the form:
{

minimize J(w)
A(w(g)) = f +D(g),

(4.1)

where A : W → W ′ is an elliptic differential operator for the state variable w,
D : Q→W ′ an impact operator for the control variable g, W and Q two Hilbert
spaces and J is a cost functional. Observe that we highlight the dependence of the
state variable w on the control variable g. In order to treat the problem given by
(4.1), two approaches have been considered in the literature. The first is based
on the introduction of the adjoint operators related to A and D (see [1, 37]).
The second relies on the classical Lagrange multiplier framework. In this work
we chose to follow the latter approach and we refer in particular to [2] for a
short review. The idea is based on reformulating the optimal control problem
(4.1) as a boundary value problem for stationary points of the associated first-
order necessary optimality condition. Let us introduce the Lagrangian functional
related to problem (4.1):

L(w, λw, g) = J(w, g)+ < A(w, g)−D(g) − f, λw >, (4.2)

where with λw ∈ W we indicate the Lagrange multiplier (adjoint variable) related
to the constraint given by (4.1)2 and < ·, · > denotes the duality between W ′ and
W . Therefore, the solution of (4.1) is among the stationary points of L and it is
determinated by the system of equations

∇L(w, λw, g) = 0. (4.3)

In the latter equation the derivatives are to be intended in the Frechet sense. In
particular, we recall that the Frechet differential with the respect of the variable
x of a functional F computed in y is dFx(y) ∈ W ′, such that:

F (y + h) − F (y) = dFx(y) h+ o(‖h‖W ), ∀h ∈ W,
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where a quantity R(h) ∈ R is o(‖h‖W ) if

lim
h→0

|R(h)|
‖h‖W

= 0.

Observe that the differential of F with respect to x computed in y (dFx(y)) is an
element of the dual of W . Therefore it can be evaluated in a function w ∈ W ,
obtaining dFx(y)w ∈ R. In particular, in searching a stationary point of L using
(4.3), we evaluate the differentials on a set of test functions. Then the fulfillment
of (4.3) is written in the form:





< dLw, v >=< dLw(w), v >= 0, ∀v ∈ W
< dLλw , v >=< dLλw(λw), v >= 0, ∀v ∈ W
< dLg, q >=< dLg(g), q >= 0, ∀q ∈ Q

(4.4)

In the sequel, as in (4.4), for the sake of simplicity we omit to specify where the
differential is computed, when it is clear from the context. Problem (4.1) can be
reformulated as a system of three boundary value problems.

4.3 Flow rate boundary problems

Referring to Figure 4.1, we recall that the flow rate boundary problem for an
incompressible Newtonian homogeneous fluid is given by

{
∂u

∂t
− µ4u+ (u · ∇)u+ ∇p = f , (t,x) ∈ YT

∇ · u = 0, (t,x) ∈ YT

(4.5)

together with the initial and boundary conditions:

Γ3

Γ1

Γ2

Γ4

Ω Γ0

Γw

Figure 4.1: Domain Ω of interest for the defective boundary problems.
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u|t=0 = u0(x), x ∈ Ω
u|Γw = 0, t ∈ (0, T ]
(pn− µ∇u n)|Γ0 = 0, t ∈ (0, T ]∫

Γi

u · n dγ = Qi, i = 1, 2, . . . , m, t ∈ (0, T ].

(4.6)

For the sake of simplicity, here and in the sequel of this Section we consider the
”laplacian” treatment of the viscous term and the bilinear form

aL(v,w) = µ(∇v,∇w)

in the variational formulation. In addition, we will first consider semplifications
of problem (4.5) and (4.6). Let us start with the linear steady case, i.e. an Oseen
problem.

4.3.1 Linear steady case

Let us consider the following steady Oseen problem:





−µ4u(kj) + (β · ∇)u(kj) + ∇p(kj) = f , x ∈ Ω
∇ · u(kj) = 0, x ∈ Ω
u(kj)|Γw = 0
(−p(kj)n+ µ∇u(kj)n)|Γ0 = 0,
(−p(kj)n+ µ∇u(kj)n)|Γi

= −kin, i = 1, . . . , m,

(4.7)

where f ∈ L2(Ω) and β ∈ L∞(Ω) are given and kj ∈ R are unknowns. This
problem states a relation between the kj and (u, p). The key step of our procedure
is to consider the Neumann boundary values kj as control variables to be set such
that u fulfills the constraint:

∫

Γj

u(kj) · n dγ = Qj, j = 1, . . . , m. (4.8)

To this aim we introduce the following functional:

JQ(u) =
1

2

m∑

i=1

(∫

Γi

u · n dγ −Qi

)2

. (4.9)
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Referring to the general case shown in Section 4.2, in this case we have





W = WQ = V × L2(Ω)
Q = R

m

J = JQ

A = AQ : WQ → (V ′)2 such that
< Ay, v >=< A(z, q), v >= aL(z, v) + ((β · ∇)z, v) + b(q, v),

∀y = (z, q) ∈WQ and v ∈ V
D = DQ : R

m → V ′ such that

< DQ(k), v >=
(∫

Γ1

k1v · n dγ, . . . ,
∫

Γm

kmv · n dγ
)
, ∀v ∈ V and k ∈ R

m.

Following [2] and recalling (4.2), we build the associated Lagrange functional
where equations (4.7) play the role of constraints for the functional (4.9):

L((u, p), (λu, λp), kj) =
1

2

m∑

i=1

(∫

Γi

u · n dγ −Qi

)2

+ aL(u,λu)+

+((β · ∇)u, v) + b(p,λu) +
m∑

i=1

∫

Γi

kiλu · n dγ − (f ,λu) + b(λp,u).

Here, λu and λp are the adjoint variables associated to u and p respecively. In
order to solve this stationary point problem, we impose that in correspondance
of the solution the Frechet differentials of L are null if evaluated in the test
functions, so that we get the:

Problem 22 Given f ∈ L2(Ω), β ∈ L∞(Ω) andQ ∈ R
m, find u(kj) ∈ V , p(kj) ∈

L2(Ω),λu ∈ V , λp ∈ L2(Ω) and kj ∈ R, j = 1, . . . , m, such that, for all v ∈
V , q ∈ L2(Ω) and ν ∈ R





(P )





< dLλu, v >= aL(u(kj), v) + ((β · ∇)u(kj), v) + b(p(kj), v)+

+
m∑

i=1

∫

Γi

kiv · n dγ − (f , v) = 0,

< dLλp, q >= b(q,u(kj)) = 0,

(A)





< dLu, v >= aL(λu, v) + ((β · ∇)v,λu) + b(λp, v)+

−
m∑

i=1

(∫

Γi

u(kj) · n dγ −Qi

)∫

Γi

v · n dγ = 0,

< dLp, q >= b(q,λu) = 0,

(Cj) < dLkj
, ν >=

∫

Γj

νλu · n dγ = 0.
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From the mathematical viewpoint, this system couples a steady Oseen problem
(P) with its adjoint (A) (both with standard boundary conditions on the artificial
sections) and m scalar equations (optimality conditions, denoted by (Cj)). To
solve it we need to resort to iterative techniques, as we will see in Section 4.5. It
is worth noting that when the convergence of the iterative process is reached, the
fulfillment of (A) and (Cj) implies λu = 0 and λp = 0. This is promptly verified
by selecting v = λu and q = λp in (A) and taking into account the (Cj).

We point out that the optimality conditions (Cj) are equivalent to impose
that: ∫

Γj

λu · n dγ = 0, j = 1, . . . , m

i.e. a null flux on the artificial sections for the adjoint solution.
Observe in particular that if β = 0, the coupling is between two steady Stokes

problems and the strong formulation of the adjoint problem (A) reads:




−µ4λu + ∇λp = 0, x ∈ Ω
∇ · λu = 0, x ∈ Ω
λu|Γw = 0
(−λpn+ µ∇λu n)|Γ0 = 0,

(−λpn+ µ∇λu n)|Γi
=
(∫

Γi

u(kj) · n dγ −Qi

)
n, i = 1, . . . , m.

4.3.2 Linear unsteady case

Let us consider now a similar framework for the following unsteady Oseen prob-
lem:





∂u(kj)

∂t
− µ4u(kj) + (β · ∇)u(kj) + ∇p(kj) = f , (t,x) ∈ YT

∇ · u(kj) = 0, (t,x) ∈ YT

u(kj)|t=0 = u0(x), x ∈ Ω
u(kj)|Γw = 0, t ∈ (0, T )
(−p(kj)n+ µ∇u(kj)n)|Γ0 = 0, t ∈ (0, T ),
(−p(kj)n+ µ∇u(kj)n)|Γi

= −ki(t)n, i = 1, . . . , m, t ∈ (0, T ),
(4.10)

with f ∈ L∞(0, T ;L2(Ω)), β ∈ L∞(0, T ;L∞(Ω)), u0 ∈ L2(Ω) and ∇ · u0 = 0.
Again, here we consider the (constant in space) Neumann boundary data kj as
control variables in minimizing the functional (4.9) for each t ∈ (0, T ). To this
aim, we consider first a discretization of the time derivative by a BDF scheme.
Equation (4.10)1 becomes:

α

∆t
un+1(kn+1

j ) − µ4un+1(kn+1
j ) + (βn+1 · ∇)un+1(kn+1

j )+ (4.11)

150



+∇pn+1(kn+1
j ) = fn+1 +

r≤n∑

i=0

τi
∆t
un−i,

where tn = n∆t, fn = f(tn,x), βn = β(tn,x), kn
j = kj(t

n), un−i is an approx-
imation of the unknown u(tn−i) and α and τi are the coefficients of the time
discretization. Furthermore, we require that JQ(u) is minimized, where here Qj

is replaced by Qn
j = Qj(t

n). The Lagrangian functional at time t = tn+1 is then
given by:

Ln+1((u, p), (λu, λp), kj) =
1

2

m∑

i=1

∫

Γi

(u · n dγ −Qn+1
i )2 +

α

∆t
(u,λu)+

+aL(u,λu) + ((βn+1 · ∇)u,λu) + b(p,λu) +
m∑

i=1

∫

Γi

kiλu ·n dγ+

−(fn+1,λu) −
r≤n∑

i=0

τi
∆t

(un−i,λu) + b(λp,u).

Now, we seek the stationary point (un+1(kn+1), pn+1(kn+1),λn+1
u , λn+1

p , kn+1
j ) of

the Lagrangian Ln. By imposing (4.3) we obtain

Problem 23 Given fn+1 ∈ L2(Ω), βn+1 ∈ L∞(Ω), un−i ∈ V , ∀i = 0, . . . , r and
Qn+1

j , j = 1 . . . , m, find un+1(kn+1
j ) ∈ V , pn+1(kn+1

j ) ∈ L2(Ω),λn+1
u ∈ V , λn+1

p ∈
L2(Ω) and kn+1

j ∈ R, j = 1, . . . , m, such that, for all v ∈ V , q ∈ L2(Ω) and
ν ∈ R:





(P )





< dLλn+1
u
, v >=

α

∆t
(un+1(kn+1

j ), v) + aL(un+1(kn+1
j ), v)+

+((βn+1 · ∇)un+1(kn+1
j ), v) + b(pn+1(kn+1

j ), v)+

+
m∑

i=1

∫

Γi

kn+1
i v · n dγ − (fn+1, v) −

r≤n∑

i=0

τi
∆t

(un−i, v) = 0,

< dLλn+1
p
, q >= b(q,un+1(kn+1

j )) = 0,

(A)





< dLun+1 , v >=
α

∆t
(λn+1

u , v) + aL(λn+1
u , v) + ((βn+1 · ∇)v,λn+1

u )+

+b(λn+1
p , v) −

m∑

i=1

(∫

Γi

un+1(kn+1
j ) ·n dγ −Qn+1

i

)∫

Γi

v · n dγ = 0,

< dLpn+1 , q >= b(q,λn+1
u ) = 0,

(Cj) < dLkn+1
j

, ν >=

∫

Γj

νλn+1
u · n dγ = 0, j = 1, . . . , m
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Also in this case, Problem 23 will be solved with an iterative technique and the
adjoint problem (A) admits as (unique) solution the trivial one.

In the Stokes case (β = 0), the adjoint problem associated to problem (A) is
now:





−µ4λn+1
u +

α

∆t
λn+1

u + ∇λn+1
p = 0 x ∈ Ω

∇ · λn+1
u = 0 x ∈ Ω

λn+1
u |Γw = 0

(−λn+1
p n+ µ∇λn+1

u n)|Γ0 = 0,

(−λn+1
p n+ µ∇λn+1

u n)|Γi
=
(∫

Γi

u(kn+1
j ) · n dγ −Qn+1

i

)
n, i = 1, . . . , m.

4.3.3 Non linear case

We focus on the problem arising when a non-linear term is present in the equa-
tions. With this aim, we consider the technique applied to the steady Navier-
Stokes problem. We have in this case:





−µ4u(kj) + (u(kj) · ∇)u(kj) + ∇p(kj) = f , x ∈ Ω
∇ · u(kj) = 0, x ∈ Ω
u(kj)|Γw = 0
(−p(kj)n+ µ∇u(kj)n)|Γ0 = 0,
(−p(kj)n+ µ∇u(kj)n)|Γi

= −kin, i = 1, . . . , m.

(4.12)

In order to minimize (4.9) with the constraint given by (4.12), we consider the
following Lagrangian functional:

L((u, p), (λu, λp), kj) =
1

2

m∑

i=1

∫

Γi

(
u · n dγ −Qi

)2

+ aL(u,λu)+

+((u · ∇)u,λu) + b(p,λu) +
m∑

i=1

∫

Γi

kiλu · n dγ − (f ,λu) + b(λp,u),

and this leads to the following:

Problem 24 Given f ∈ L2(Ω) andQ ∈ R
m find u(kj) ∈ V , p(kj) ∈ L2(Ω),λu ∈

V , λp ∈ L2(Ω) and kj ∈ R, j = 1, . . . , m, such that, for all v ∈ V , q ∈ L2(Ω)
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and ν ∈ R:




(P )





< dLλu, v >= aL(u(kj), v) + ((u(kj) · ∇)u(kj), v)+

+b(p(kj), v) +

m∑

i=i

∫

Γi

kiv ·n dγ − (f , v) = 0,

< dLλp , q >= b(q,u(kj)) = 0,

(A)





< dLu, v >= aL(λu, v) + ((u(kj) · ∇)v,λu) + ((v · ∇)u(kj),λu)+

+b(λp, v) −
m∑

i=1

(∫

Γi

u(kj) · n dγ −Qi

)∫

Γi

v · n dγ = 0,

< dLp, q >= b(q,λu) = 0,

(C) < dLkj
, ν >=

∫

Γj

νλu · n dγ = 0, j = 1, . . . , m.

In this case the adjoint problem is given by (see [5]):





−µ4λu + (∇u(kj))
Tλu − (u(kj) · ∇)λu + ∇λp = 0, x ∈ Ω

∇ · λu = 0, x ∈ Ω
λu|Γw = 0
(−λpn+ µ∇λu n)|Γ0 = 0,

(−λpn+ µ∇λu n)|Γj
=
(∫

Γj

u(kj) ·n dγ −Qj

)
n, j = 1, . . . , m.

4.4 Mean pressure boundary problems

As pointed out in Chapter 1, another defective boundary data problem some-
times considered in the applications refers to the mean pressure. As a matter
of fact, referring to Figure 4.1, we recall that the mean pressure problem for an
incompressible Newtonian homogeneous fluid is given by (4.5) together with the
initial and boundary conditions (4.6)1,(4.6)2 and the following defective condition
on the artficial sections Γj:

1

|Γj|

∫

Γj

p dγ = Pj, j = 0, 1, . . . , m, t ∈ (0, T ], (4.13)

where Pj are given. Let us notice that if f ∈ L2(Ω) and if the boundary ∂Ω
of the domain is twice continuously differentiable, the trace of p is well defined,
since p ∈ H1(Ω) (see [32]).

As already pointed out in Section 1.3.2, the approach based on the implicit
forcing of natural boundary conditions associated to the choice of a variational
formulation leads to Problem 4 (proposed in [28]), which is an approximation of
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the mean pressure problem. In fact, this formulation actually forces the following
boundary conditions

(−pn + µ∇u n)|Γj
= −Pjn j = 0, . . . , m.

More precisely, these conditions are exact if the tangential viscous stress are null,
i.e.

(µ(∇u n) · τ i)|Γj
= 0, j = 0, . . . , m, i = 1, d− 1.

Moving from the proposal of the previous section, it is possible to generalize this
formulation in terms of a control problem. Let us still consider the constant
normal stresses kj as control variable for achieving the constraint minimization
of a suitable functional. We start again by considering the linear steady case.

4.4.1 Linear steady case

Let us consider the steady Oseen problem given by (4.7)1, (4.7)2, (4.7)3 togheter
with the following boundary conditions:

(−p(kj)n+ µ∇u(kj) n)|Γj
= −kjn j = 0, . . . , m. (4.14)

where we stress the dependence of the solution (u, p) on the constant kj. The
latter are determined in order to minimize the following functional:

JP (p) =
1

2

( m∑

i=0

1

|Γi|

∫

Γi

p dγ − Pi

)2

. (4.15)

In particular, we refer to the following Lagrangian functional:

L((u, p), (λu, λp), kj) =
1

2

m∑

i=0

( 1

|Γi|

∫

Γi

p dγ − Pi

)2

+ aL(u,λu)+

+((β · ∇)u,λu) + b(p,λu) +

m∑

i=0

∫

Γi

kiλu · n dγ − (f ,λu) + b(λp,u)

The search of a stationary point for L leads

Problem 25 Given f ∈ L2(Ω) and Pj ∈ R, j = 0, . . . , m, find u ∈ V , p ∈
H1(Ω),λu ∈ V , λp ∈ L2(Ω) and kj ∈ R, j = 0, . . . , m, such that, for all v ∈
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V , q ∈ L2(Ω) and ν ∈ R:




(P )





< dLλu, v >= aL(u(kj), v) + ((β · ∇)u(kj), v) + b(p(kj), v)+

+
m∑

i=0

∫

Γi

kiv · n dγ − (f , v) = 0,

< dLλp , q >= b(q,u(kj)) = 0,

(A)





< dLu, v >= aL(λu, v) + ((β · ∇)v,λu) + b(λp, v) = 0,

< dLp, q >=

m∑

i=0

( 1

|Γi|

∫

Γi

p(kj) dγ − Pi

) 1

|Γi|

∫

Γi

q dγ + b(q,λu) = 0,

(Cj) < dLki
, ν >=

∫

Γi

νλu · n dγ = 0, i = 0, . . . , m.

In this case, we obtain a system coupling an Oseen (P) and a steady-compressible
problem (A). In the particular case β = 0, the adjoint problem is given by:





−µ4λu + ∇λp = 0, x ∈ Ω

∇ · λu =
m∑

i=0

( 1

|Γi|

∫

Γi

p(kj) dγ − Pi

)
, x ∈ Ω

λu|Γw = 0
(−λpn+ µ∇λu n)|Γj

= 0, j = 0, . . . , m

In correspondence of the solution of Problem 25 it admits as unique solution the
trivial one.

It is worth pointing out that the previous approach can be straightforwardly
extended to the unsteady and to the non-linear case, in analogy with Section 4.3.

We note that the computed velocity on an artificial section Γi is, in general,
not aligned with the normal to the section (see Figures 4.10 in Section 4.6). This
is due to the fact that Problem 25 forces zero tangential stresses on Γi as natural
boundary condition. This is indeed not corresponding to the physical problem.
In order to overcome this, we need to add more control variables in order to
control also the tangential components of the stress. Therefore, in order to treat
the more general case, we set:

(−p(kj)n+ µ∇u(kj) n)|Γj
= −kj(x), j = 0, . . . , m. (4.16)

where the values of the kj are chosen in order to minimize the functional:

JP (p) =
1

2

m∑

i=0

( 1

|Γi|

∫

Γi

p dγ − Pi

)2

+
1

2

m∑

i=0

∫

Γi

‖∇uai‖2
Rd dγ, (4.17)

where ‖ ·‖Rd is the Euclidean norm and ai is the axial direction over Γi. Building
the Lagrangian functional obtained from (4.17) constrained by (4.7)1, (4.7)2,
(4.7)3 and (4.16), we obtain the following:
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Problem 26 Given f ∈ L2(Ω) and Pj ∈ R, j = 0, . . . , m, find u ∈ V , p ∈
H1(Ω),λu ∈ V , λp ∈ L2(Ω) and kj ∈ L2(Γj), j = 0, . . . , m, such that, for all
v ∈ V , q ∈ L2(Ω) and ν ∈ L2(Γi), i = 0, . . . , m:





(P )





< dLλu, v >= aL(u(kj), v) + ((β · ∇)u, v) + b(p(kj), v)+

+
m∑

i=0

∫

Γi

ki · v dγ − (f , v) = 0,

< dLλp, q >= b(q,u(kj)) = 0,

(A)





< dLu, v >=
m∑

i=0

∫

Γi

(∇u(kj)ai) · (∇v ai) dγ + aL(λu, v)+

+((β · ∇)v,λu) + b(λp, v) = 0,

< dLp, q >=
m∑

i=0

( 1

|Γi|

∫

Γi

p(kj) dγ − Pi

) 1

|Γi|

∫

Γi

q dγ + b(q,λu) = 0,

(Ci) < dLki
,ν >=

∫

Γi

ν · λu dγ = 0, i = 0, . . . , m

Let us notice that the optimality conditions (Ci) imply that:

λu|Γi
= 0, i = 0, . . . , m

and so they are no more scalar but vectorial function conditions. Therefore, the
conditions of fulfilment of the optimal state are more restrictive of the previous
ones. Let us also notice that, since

∫

Γi

(∇u(kj)ai) · (∇v ai) dγ = −
∫

Γi

∂2u(kj)

∂a2
i

· v dγ +

∫

∂Γi

∂u(kj)

∂ai

· vdl,

and since ∂Γi ⊂ Γw, the adjoint problem, if β = 0, is now:





−µ4λu + ∇λp =
m∑

i=0

∂2u(kj)

∂a2
i

∣∣∣
Γi

, x ∈ Ω

∇ · λu =
m∑

i=1

( 1

|Γi|

∫

Γi

p(kj) dγ − Pi

)
, x ∈ Ω

λu|Γw = 0
(−λpn+ µ∇λu n)|Γj

= 0, j = 0, . . . , m

In order that the trace of ∂2u(kj)/∂a
2
i on Γi is well definied it is necessary to

ask that f ∈ H1(Ω) (assuming that Ω is smooth enough). Infact, in this case
u ∈H3(Ω) and therefore ∂2u(kj)/∂a

2
i ∈H1(Ω) (see [32]).
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4.4.2 A more appropriate description of the viscous term

As already pointed out in Chapter 1, we refer to the ”complete” formulation
when we consider the full viscous term,

∇ · (µ(∇u+ (∇u)t)).

We are interested in this formulation since it is the correct formulation to be
considered for several applications, e.g. the fluid-structure interaction problem
(see Section 3.4). The natural boundary conditions associated to this treatment
of the viscous term are (1.8). Therefore, imposing null tangential stresses is
equivalent in this case to:

(µ(∇u+ (∇u)t)n · τ j)|Γi
= 0, i = 0, . . . , m, j = 1, d− 1.

This condition in general implies that

∂(u · τ j)

∂n

∣∣∣
Γi

6= 0, i = 0, . . . , m, j = 1, d− 1

and consequently

(u · τ j)|Γi
6= 0, i = 0, . . . , m, j = 1, d− 1.

It means that in this case the imposition of null tangential stress on an artificial
section Γi, brings about a non null tangential component of the velocity (see
[28]). This ”boundary effect” would be physical if the artificial section was at
the inteface with an external pressure (as in a tube from which water flows).
Nevertheless, it is undesiderable in a truncated domain, where Γi represents just
an artificial ”cut” of a larger domain. To treat this problem in [68] it has been
proposed to prescribe directly

(u · τ j)|Γi
= 0, i = 0, . . . , m, j = 1, d− 1,

in the variational formulation of the problem. However, this is a very strong
statement. Therefore, in order to introduce a less perturbative strategy, here we
introduce a new approach, based again on the control theory. In particular, let
us consider the following linear steady problem:




−∇ · (µ(∇u(kj) + (∇u(kj))
t)) + (β · ∇)u(kj) + ∇p(kj) = f , x ∈ Ω

∇ · u(kj) = 0, x ∈ Ω
u(kj)|Γw = 0
(−p(kj)n + µ(∇u(kj) + (∇u(kj))

t)n)|Γj
= −kj(x), j = 0, . . . , m

(4.18)
In this case, due to the boundary effects, we consider conditions (4.16) and func-
tional (4.17) also for a rectangular/cylindrical domain. Minimizing functional
(4.17) constrained by equations (4.18), we obtain the following
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Problem 27 Given f ∈ L2(Ω) and Pj ∈ R, j = 0, . . . , m, find u ∈ V , p ∈
H1(Ω),λu ∈ V , λp ∈ L2(Ω) and kj ∈ L2(Γj), j = 0, . . . , m, such that, for all
v ∈ V , q ∈ L2(Ω) and ν ∈ L2(Γi), i = 0, . . . , m:





(P )





< dLλu, v >= aC(u(kj), v) + ((β · ∇)u(kj), v) + b(p(kj), v)+

+
m∑

i=0

∫

Γi

ki · v dγ − (f , v) = 0,

< dLλp, q >= b(q,u(kj)) = 0,

(A)





< dLu, v >=
m∑

i=0

∫

Γi

(∇u(kj)ai) · (∇v ai) dγ + aC(v,λu)+

+((β · ∇)v,λu) + b(λp, v) = 0,

< dLp, q >=
m∑

i=0

( 1

|Γi|

∫

Γi

p(kj) dγ − Pi

) 1

|Γi|

∫

Γi

q dγ + b(q,λu) = 0,

(Ci) < dLki
,ν >=

∫

Γi

ν · λu dγ = 0, i = 0, . . . , m

where aC(·, ·) is given by (1.7).

Alternatively, we could look for the condition (4.16) that minimize directly
the tangential velocity, for example minimizing the following functional:

JP (p) =
1

2

m∑

i=0

( 1

|Γi|

∫

Γi

p dγ − Pi

)2

+
1

2

d−1∑

l=1

m∑

i=0

∫

Γi

|u · τ l|2 dγ (4.19)

This leads to the following Lagrangian functional:

L((u, p), (λu, λp),kj) =
1

2

m∑

i=0

( 1

|Γi|

∫

Γi

p dγ − Pi

)
+

+
1

2

d−1∑

l=1

m∑

i=0

∫

Γi

|u · τ l|2 dγ + aC(u,λu) + ((β · ∇)u,λu)+

+b(p,λu) +
m∑

i=0

∫

Γi

ki · λu dγ − (f ,λu) + b(λp,u)

and to the following

Problem 28 Given f ∈ L2(Ω) and Pj ∈ R, j = 0, . . . , m, find u ∈ V , p ∈
H1(Ω),λu ∈ V , λp ∈ L2(Ω) and kj ∈ L2(Γj), j = 0, . . . , m, such that, ∀v ∈
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V , q ∈ L2(Ω) and ν ∈ L2(Γi), i = 0, . . . , m:




(P )





< dLλu, v >= aC(u(kj), v) + ((β · ∇)u(kj), v) + b(p(kj), v)+

+
m∑

i=0

∫

Γi

ki · v dγ − (f , v) = 0,

< dLλp, q >= b(q,u(kj)) = 0,

(A)





< dLu, v >=
d−1∑

l=1

m∑

i=0

∫

Γi

u · τ l(kj) v · τ j dγ + aC(v,λu)+

+((β · ∇)v,λu) + b(λp, v) = 0,

< dLp, q >=
m∑

i=0

( 1

|Γi|

∫

Γi

p(kj) dγ − Pi

) 1

|Γi|

∫

Γi

q dγ + b(q,λu) = 0,

(C) < dLki
,ν >=

∫

Γi

ν · λu dγ = 0, i = 0, . . . , m

Also in this case we can extend the previous control problems to the unsteady
and to the non linear cases.

4.4.3 Flow rates as control variables

In the formulation of the flow rates problem, we introduced a set of control
variables associated to the normal component of the stress tensor. For solving
the mean pressure problem, we can also pursue a sort of “dual” approach, in
which the control variables are given by the flow rates on Γj, j = 1, . . . , m. More
precisely, we consider the linear steady problem





−µ4u(Qj) + (β · ∇)u(Qj) + ∇p(Qj) = f , x ∈ Ω
∇ · u(Qj) = 0 x ∈ Ω
u(Qj)|Γw = 0(
− p(Qj)n+ µ∇u(Qj)n)|Γ0 = −P0n,∫

Γj

u(Qj) · n dγ = Qj, j = 1, . . . , m

(4.20)

Condition on Γ0 is explicitly prescribed in order to avoid compatibility conditions
on the flow rate data induced by the incompressibility (see (1.12)).

Let us now formulate the problem in terms of constrained minimization of
the functional given by (4.15), with the constraint given by (4.20). We point
out that the latter is a flow rate problem and therefore we introduce the related
augmented formulation. In particular, the Lagrangian functional reads

L((u, p, ηi), (λu, λp, ληj
), Qj) =

1

2

( m∑

i=1

1

|Γi|

∫

Γi

p dγ − Pi

)2

+
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+aL(u,λu) + ((β · ∇)u,λu) + b(p,λu) +

m∑

i=1

ηi

∫

Γi

λu · n dγ+

−(f ,λu) + b(λp,u) +
m∑

i=1

ληi

(∫

Γi

u · n dγ −Qi

)
.

Let us point out that ηj are the Lagrange multipliers of the augmented formu-
lation (see Chapter 2) and that λu, λp and ληj

are the adjoint variables related
to u, p and ηj respectively. By forcing the vanishing of the derivatives of L with
respect all the variables in correspondance of the solution, we obtain the following
problem.

Problem 29 Given f ∈ L2(Ω) and Pj ∈ R, j = 1, . . . , m, find u ∈ V , p ∈
H1(Ω), ηj ∈ R, j = 1, . . . , m, λu ∈ V , λp ∈ L2(Ω), ληj

∈ R, j = 1, . . . , m, and
Q ∈ R

m such that, for all v ∈ V , q ∈ L2(Ω) and ν ∈ R:





(P )





< dLλu, v >= aL(u(Qj), v) + ((β · ∇)u(Qj), v) + b(p(Qj), v)+

+
m∑

i=1

ηi(Qj)

∫

Γi

v · n dγ − (f , v) = 0,

< dLλp , q >= b(q,u(Qj)) = 0,

< dLληi
, ν >=

(∫

Γi

u(Qj) ·n dγ −Qi

)
ν = 0,

(A)





< dLu, v >= aL(λu, v) + ((β · ∇)v,λu) + b(λp, v)+

+
m∑

i=1

ληi

∫

Γi

v · n dγ = 0,

< dLp, q >=

m∑

i=1

( 1

|Γi|

∫

Γi

p(Qj) dγ − Pi

) 1

|Γi|

∫

Γi

q dγ + b(q,λu) = 0,

< dLηi
, ν >=

(∫

Γi

λu ·n dγ
)
ν = 0,

(Ci) < dLQi
, ν >= −ληi

ν = 0, j = 1, . . . , m

Conditions (Ci) are equivalent to

ληi
= 0, i = 1, . . . , m.

Therefore, recalling the physical meaning of the Lagrange multipliers in the aug-
mented formulation (see Proposition 1, Section 1.3.1) we have to check that the
normal stress of the adjoint problem is zero on each artificial section. This is in
perfect analogy with the problems proposed in Section 4.3, for which we have to
check that the fluxes of the adjoint problem were zero.
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In this case, if β = 0, the adjoint problem is:





−µ4λu + ∇λp = 0, x ∈ Ω

∇ · λu =
m∑

i=1

( 1

|Γi|

∫

Γi

p(Qj) dγ − P̃i

)
, x ∈ Ω

λu|Γw = 0
(−λpn+ µ∇λu n)|Γ0 = 0,∫

Γi

λu ·n dγ = 0, i = 1, . . . , m.

and it admits as (unique) solution the trivial one.

4.5 Numerical methods

In this section we present some numerical methods for the resolution of the prob-
lems introduced in the previous sections. In particular, in Section 4.5.1 we in-
vestigate the flow rate problem, introducing firstly a particular algorithm for the
imposition of one flow rate and then a general strategy applied, by way of ex-
ample, to Problem 22. In Section 4.5.2 we apply this strategy to Problem 25 as
well, as example for the mean pressure problems.

4.5.1 Flow rate problems

A particular case: prescription of one flow rate condition

The first kind of algorithm we are going to show is not based on the control
problems introduced in Section 4.3, but directly on the weak formulation of (4.7),
(4.10) or (4.12). Nevertheless, this is valid only if one flux is imposed.

Firstly, let us consider problem given by (4.7) and (4.8), with m = 1. The
weak formulation is: find u(k) ∈ V and p(k) ∈ L2(Ω) such that for all v ∈
V , q ∈ L2(Ω)





aL(u(k), v) + ((β · ∇)u(k), v) + b(p(k), v) +

∫

Γ

kv · n dγ = (f , v)

b(q,u(k)) = 0
(4.21)

Setting v = u(k) in the first, we obtain:

aL(u(k),u(k)) + ((β · ∇)u(k),u(k)) +

∫

Γ

ku(k) · n dγ = (f ,u(k)),
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and then:

k =
(f ,u(k)) − µ‖∇u(k)‖2 − ((β · ∇)u(k),u(k))

Q
= φ(k).

This is a fixed point equation that could be solved with the following iterative
procedure (we have denoted with l the subiteration index and with V h and Qh

the subspaces of V and L2(Ω) respectively):

Algorithm 10

(See Figure 4.2) Given k1
h and ε, do until convergence

• Solve





aL(ul
h(k

l
h), vh) + ((β · ∇)ul

h(k
l
h), vh) + b(pl

h(k
l
h), vh) +

∫

Γ

kl
hvh · n dγ =

= (f , vh), ∀vh ∈ V h,
b(qh,u

l
h(k

l
h)) = 0, ∀qh ∈ Qh.

(4.22)

• Compute

kl+1
h =

(f ,ul
h(k

l
h)) − µ‖∇ul

h(k
l)‖2 − ((β · ∇)ul

h(k
l
h),u

l
h(k

l
h))

Q
(4.23)

• if |kl+1
h − kl

h| < ε

exit

• else l = l + 1

end �

In the Navier-Stokes case, it is possible to set

β = ul−1
h

in Algorithm 10.
In the particular case f = 0, the velocity u depends linearly on k. Therefore,

denoting with ũ the solution of problem (4.21), with f = 0 and k = 1, the
solution u is given by

u = kũ. (4.24)
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Yes

No

FIXED POINT ITERATIONS

Convergence test

END

Solve (4.22)
l = l + 1

Given an initial guess k1
h

Compute kl+1
h with (4.23)

Figure 4.2: Algorithm 10 for the prescription of one flow rate conditions, steady
case.

Posing v = u in (4.21), with f = 0, we obtain:

µ‖∇u‖2 + ((β · ∇)u,u) + kQ = 0.

Substituting (4.24) in the latter equation we obtain

µk2‖∇ũ‖2 + k2((β · ∇)ũ, ũ) + kQ = 0

and therefore the following explicit expression for k:

k = − Q

(µ‖∇ũ‖2 + ((β · ∇)ũ, ũ))
.

Therefore, in this case we do not need to resort to a fixed point strategy.
In the unsteady case, let us consider the time discretized problem (4.11) to-

gether with (4.10)2−6. The related weak formulation at time t = tn+1 reads:

α

∆t
(un+1(kn+1), v) + aL(un+1(kn+1), v) + ((βn+1 · ∇)un+1(kn+1), v)+
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+

∫

Γ

kn+1v · n dγ = (fn+1, v) +

r≤n∑

i=0

τi
∆t

(un−i, v).

Posing v = un+1, we obtain for all n:

α

∆t
(un+1(kn+1),un+1(kn+1)) + µ(∇un+1(kn+1),∇un+1(kn+1))+

((βn+1 · ∇)un+1(kn+1),un+1(kn+1)) +

∫

Γ

kn+1un+1(kn+1) · n dγ =

= (fn+1,un+1(kn+1)) +

r≤n∑

i=0

τi
∆t

(un−i,un+1(kn+1)) = 0,

and then:

kn+1 =
(fn+1,un+1(kn+1)) +

∑r≤n
i=0

τi

∆t
(un−i,un+1(kn+1))

Qn+1
+

−
α
∆t

(un+1(kn+1),un+1(kn+1)) + µ(∇un+1(kn+1),∇un+1(kn+1))

Qn+1
+

−((βn+1 · ∇)un+1(kn+1),un+1(kn+1))

Qn+1
= φn+1(kn+1)

that could be solved with a fixed point algorithm like the previous one.

The general case

Let us consider Problem 22 as our model. For its numerical resolution, we can
think to use an iterative method such that at each iteration we solve separately
the single problems (P) and (A) and we check condition (Cj) until convergence.
Indipendently from the algorithm chosen, let us notice that the adjoint problem
(A) in Problem 22 (and also in Problem 23 and 24) depends linearly on the values
of the natural boundary condition (

∫
Γj
u(kj) ·n dγ−Qj) on Γj. Therefore, if for

all i = 1, . . . , m, (λu,i, λp,i) is solution of:





aL(λu,i, v) + ((β · ∇)v,λu,i) + b(λp,i, v) −
∫

Γi

v · n dγ = 0, ∀v ∈ V ,
b(λu,i, q) = 0, ∀q ∈ L2(Ω),

(4.25)
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the solution of (A) in Problem 22 is given by




λu =
m∑

i=1

(∫

Γi

u(kj) · n dγ −Qi

)
λu,i

λp =

m∑

i=1

(∫

Γi

u(kj) ·n dγ −Qi

)
λp,i.

Hence, instead of the adjoint problem we can solve m problems (4.25) out of the
iterative cycle.

In order to obtain an algorithm to solve Problem 22, we could think to look for
the zeros of dLkj

, i.e. to find the values kj satisfying the conditions of fulfilment
of the optimal state

< dLkj
, ν >= 0, ∀ν ∈ R.

Then, starting from some initial guesses k0
j , we can utilize the residuals of this

equations (i.e. dLkj
itself) to update the values of kj. In particular, let us consider

the following:

Algorithm 11

(See Figure 4.3)

• Solve for j = 1, . . . , m the problems




aL(λu,j,h, vh) + ((β · ∇)vh,λu,j,h) + b(λp,j,h, vh) −
∫

Γj

vh · n dγ = 0,

∀vh ∈ V h,
b(λu,j,h, qh) = 0, ∀qh ∈ Qh,

(4.26)

• Given k1
j,h, j = 1, . . . , m and ε, do until convergence

- Solve



aL(ul
h(k

l
j,h), vh) + ((β · ∇)ul

h(k
l
j,h), vh) + b(pl

h(k
l
j,h), vh)+

+

m∑

i=1

∫

Γi

kl
i,hvh · n dγ − (f , vh) = 0, ∀vh ∈ V h

b(qh,u
l
h(k

l
j,h)) = 0, ∀qh ∈ Qh

(4.27)

- Compute the adjoint solutions




λl
u,h =

m∑

i=1

(∫

Γi

ul
h(k

l
j,h) · n dγ −Qi

)
λl

u,i,h

λl
p,h =

m∑

i=1

(∫

Γi

ul
h(k

l
j,h) · n dγ −Qi

)
λi

p,i,h.

(4.28)
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- if ∫

Γj

λl
u,h · n dγ < ε, ∀j = 1, . . . , m (4.29)

exit

- else

kl+1
j,h = kl

j,h + τ l
j

∫

Γj

λl
u,h · n dγ (4.30)

l = l + 1.

• end

A possible expression for the coefficient τ l
j is:

τ l
j = −J(ul

h)

|L2
kl

j,h

| .

that leads to a steepest descent algorithm. For example, for Problem 22 we obtain
the update rule:

kl+1
j,h = kl

j,h −

1

2

m∑

j=1

(∫

Γj

ul
h · n dγ −Qj

)2

∫

Γj

λl
u,h · n dγ

.

This strategy could be extended over all the other proposed problems.
Algorithm 11 allows us to prove that Problem 22 is well posed (for the sake

of simplicity, we refer to the case m = 1). We have the following:

Proposition 9 If ‖β‖L∞ ≤ µ/C2
P , Problem 22 admits an unique solution

(u(k), p(k),λu, λp, k).

Proof

Let us consider the solenoidal space V ∗ and let us introduce the following oper-
ators:

• Pf : R → V ∗, that associate to a scalar k the solution u of the following
steady Oseen problem:

aL(u, v) + ((β · ∇)u, v) = −
∫

Γ

kv · n dγ + (f , v) (4.31)

for all v ∈ V ∗.
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Solve (4.27)

END

Update rule

Compute (4.28)

Solve (4.26), ∀j = 1, . . . , m

(4.29)
Convergence test

(4.30)

l = l + 1

Figure 4.3: Algorithm 11 for the prescription of flow rates conditions, steady
case.

• Sτ : (R × R) → R such that Sτ (k, j) = k + τj, with τ given.

• A : V ∗ → R such that A(v) =

∫

Γ

v ·n dγ.

Let us notice that all the operators introduced are linear. Problem 22 can be
reformulated as a fixed point problem: find the fixed point k of the operator
T : R → R:

T (k) = Sτ (k, A(P0(A(Pf(k)) −Q)))

From (4.31), posing v = u, ‖v‖V ∗ = ‖∇v‖, with ‖ · ‖ the L2 norm and with CT

and Cp the trace and Poincaré inequalities constant respectively, we obtain:

µ‖∇u‖2 ≤ ‖β‖L∞‖u‖2 + |k|CT‖u‖H1(Ω) + ‖f‖ ‖u‖ ≤

≤ |k|CT

√
C2

P + 1‖∇u‖ +
1

2ε
‖f‖2 +

(
‖β‖L∞ +

ε

2

)
‖u‖2 ≤
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≤ |k|2C2
T (C2

P + 1)

2ε
+
ε

2
‖∇u‖2 +

1

2ε
‖f‖2 + C2

P

(
‖β‖L∞ +

ε

2

)
‖∇u‖2,

and then the following estimate holds:

‖u‖V ∗ ≤
√

1

C1

(
‖f‖2 + C2|k|2

)
≤ 1√

C1

‖f‖ +

√
C2

C1

|k|, (4.32)

with {
C1 =

(
µ−

(ε
2

+ C2
P

(
‖β‖L∞ +

ε

2

)))

C2 = C2
T (1 + C2

p)

Let us notice that from the arbitrariety of ε follows that C1 > 0 if

‖β‖L∞ ≤ µ

C2
P

Let us prove that, under suitable assumptions, T is a contraction:

|T (k1)−T (k2)| = |k1 + τA(P0(A(Pf(k1))−Q))−k2 − τA(P0(A(Pf (k2))−Q))| =

= |(k1 − k2) + τA(P0(A(P0(k1 − k2))))| ≤

|(k1 − k2) + τCT ‖P0(A(P0(k1 − k2)))‖H1(Ω)| ≤

≤ |(k1 − k2) + τCT

√
C2

p + 1‖P0(A(P0(k1 − k2)))‖V ∗ | ≤

≤ |(k1 − k2) + τCT

√
C2

p + 1

√
C2

C1
|A(P0(k1 − k2))| ≤

≤ |(k1 − k2) + τCT

√
C2

p + 1

√
C2

C1

CT

√
C2

p + 1‖P0(k1 − k2)‖V ∗ | ≤

≤
∣∣∣|k1 − k2| + τC2

T (C2
p + 1)

√
C2

C1

√
C2

C1
|k1 − k2|

∣∣∣ ≤
∣∣∣1 + τC2

T (C2
p + 1)

C2

C1

∣∣∣|k1 − k2|
(4.33)

Therefore T is a contraction if

−2C1

C2
T (C2

p + 1)C2
< τ < 0.

�
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4.5.2 Mean pressure problems

We can extend Algorithm 11 to the problems shown in Section 4.4. Let us notice
that if the control variable is a set of scalar (i.e. for Problem 25 and 29), the
adjoint problem could be solved out of the iterative cicle. In particular, referring
to Problem 25 by way of example, if (λ̃u, λ̃p) is solution of the following problem





aL(λ̃u, v) + ((β · ∇)v, λ̃u) + b(λ̃p, v) = 0, ∀v ∈ V ,
b(λ̃u, q) = −

∫

Ω

q dω, ∀q ∈ L2(Ω)

we can build the solution of the adjoint problem (A) in the iterative cycle by:




λu =
[ m∑

i=1

( 1

|Γi|

∫

Γi

p(kj) dγ − Pi

)]
λ̃u

λp =
[ m∑

i=1

( 1

|Γi|

∫

Γi

p(kj) dγ − Pi

)]
λ̃p

Therefore, we obtain the following algorithm for the resolution of Problem 25:

Algorithm 12

(See Figure 4.4)

• Solve



aL(λ̃u,h, vh) + ((β · ∇)vh, λ̃u,h) + b(λ̃p,h, vh) = 0, ∀vh ∈ V h,

b(λ̃u,h, qh) = −
∫

Ω

qh dω, ∀qh ∈ Qh
(4.34)

• Given k1
j , j = 0, . . . , m and ε, do until convergence

- Solve



aL(ul
h(k

l
j,h), vh) + ((β · ∇)ul

h(k
l
j,h), vh) + b(pl

h(k
l
j,h), vh)+

+
m∑

i=0

∫

Γi

kl
i,hvh · n dγ − (f , vh) = 0, ∀vh ∈ V h

b(qh,u
l
h(k

l
j,h)) = 0, ∀qh ∈ Qh

(4.35)

- Compute the adjoint solutions




λl
u,h =

[ m∑

i=1

( 1

|Γi|

∫

Γi

pl
h(k

l
j,h) dγ − Pi

)]
λ̃u,h

λl
p,h =

[ m∑

i=1

( 1

|Γi|

∫

Γi

pl
h(k

l
j,h) dγ − Pi

)]
λ̃p,h

(4.36)
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- if ∫

Γj

λl
u,h · n dγ < ε, ∀j = 0, . . . , m

exit

- else

kl+1
j,h = kl

j,h + τ l
j

∫

Γj

λl
u,h · n dγ ∀j = 0, . . . , m

l = l + 1

• end
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FIXED POINT ITERATIONS

END

(4.29)
Convergence test

(4.30)

l = l + 1

Solve (4.34), ∀j = 0, . . . , m

Solve (4.35)

Update rule

Compute (4.36)

Figure 4.4: Algorithm 12 for the prescription of mean pressure conditions, steady
case.
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4.6 Numerical results

In this section we present some numerical results for the validation of the algo-
rithms introduced in Section 4.5. In particular, in Section 4.6.1 we focus on the
flow rate problems, while in Section 4.6.2 on the mean pressure problems. In all
the simulations we used the 2D Finite Elements library Freefem++ (see [21]).

4.6.1 Flow rate problems

In the simulation we are going to present, the computational domain is a rectan-
gular R, whose size is 6 × 1cm, with viscosity µ = 0.035cm2/s.

In order to validate the algorithms proposed in Section 4.5.1, we imposed
both a steady (Q = 0.1cm2/s) and a pulsatile (Q = 0.15 + 0.1cos(2πt)cm2/s for
Algorithm 10 and Q = 0.1cos(2πt)cm2/s for Algorithm 11) flow rate at the inlet
of R. Algorithm 10 (with an Aitken procedure) converges in 21 iterations in the
steady case (Figure 4.5, left) and in 3 (average) iterations in the unsteady case
(Figure 4.6), with tollerance 10−6. Also with Algorithm 11 the numerical results
are in good agreement with the analytical ones (see Figures 4.5, right, and Figure
4.7). The number of iterations in this case is shown in Table 4.1.

Figure 4.5: Axial velocity computed with Algorithm 10 (left - toll = 10−6) and
Algorithm 11 (right - toll = 10−7) - steady flux imposed - o numerical solution,
- analitical solution

Number of iterations τ = −1 τn = −J(un)/L2
kn τn = −J(un)/L2

kn+Aitken
Steady case 87 22 4

Unsteady case - 7 3

Table 4.1: Number of iterations for the convergence of Algorithm 11 (in average
for the unsteady case) - toll = 10−7
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Figure 4.6: Axial velocity computed with Algorithm 10 - cosinusoidal flux im-
posed - t = 0.3s on the left and t = 0.6s on the right - toll = 10−6

Figure 4.7: Axial velocity computed with Algorithm 11 - cosinusoidal flux im-
posed - toll = 10−8 - o numerical solution, - analitical solution

4.6.2 Mean pressure problems

In the first simulation, we would like to impose a mean pressure P = 1 g/s2cm
at the outlet of a trapezoidal domain T (see Figure 4.8). We indicate with a
the axial direction. In this case it is given by y = 0.5 (see Figure 4.8). Using
Algorithm 12, an undesiderable radial velocity, a dirty axial velocity at the outlet
and a dirty pressure on the corner of the outlet occur (see Figure 4.9, left, and
Figures 4.10). To avoid these effects, we solve Problem 26 minimizing functional
(4.17), with the same iterative scheme. Figure 4.9, right, and Figures 4.11 show
that this strategy is able to reduce these effects of several order of magnitude.

The same effects occur using the ”complete” treatment of the viscous term.
In particular, we would like to impose the mean pressure P = 1 g/s2cm in the
domain R (see Figure 4.12). Both minimizing functional (4.19) (refer to Problem
28, to Figure 4.13, left, and to Figures 4.14) and minimizing functional (4.17)
(see Figure 4.13, right and Figure 4.15), the boundary effects reduce significantly.
Finally, we used the ”complete” treatment of the viscous term in the trapezoidal
domain T . In this case we expect that the boundary effects due to the formulation
and to the geometry sum up. This is confirmed by Figures 4.16. Nevertheless,
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Figure 4.8: Mean pressure P = 1 g/s2cm prescribed at the outlet of a trapezoidal
domain minimizing functional (4.15) - toll = 10−7

Figure 4.9: Mean pressure P = 1 g/s2cm prescribed at the outlet of a trapezoidal
domain minimizing functional (4.15) (left) and functional (4.17) (right) - toll =
10−7

minimizing functional (4.17) we reduce these effects as well (see Figures 4.17).
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Figure 4.10: Axial (left) and tangential (right) velocity prescribing a mean pres-
sure P = 1 g/s2cm at the outlet of a trapezoidal domain minimizing functional
(4.15) - toll = 10−7

Figure 4.11: Axial (left) and tangential (right) velocity prescribing a mean pres-
sure P = 1 g/s2cm at the outlet of a trapezoidal domain minimizing functional
(4.17) - toll = 10−7
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Figure 4.12: Axial (left) and tangential (right) velocity prescribing a mean pres-
sure P = 1 g/s2cm at the outlet of a rectangular domain using the ”complete”
treatment of the viscous term and minimizing functional (4.15) - toll = 10−7

Figure 4.13: Mean pressure P = 0 g/s2cm prescribed at the outlet of a rectan-
gular domain using the ”complete” treatment of the viscous term, minimizing
functional (4.19) (left) and functional (4.17) (right) - toll = 10−7
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Figure 4.14: Axial (left) and tangential (right) velocity prescribing a mean pres-
sure P = 0 g/s2cm at the outlet of a rectangular domain using the ”complete”
treatment of the viscous term and minimizing functional (4.19) - toll = 10−7

Figure 4.15: Axial (left) and tangential (right) velocity prescribing a mean pres-
sure P = 0 g/s2cm at the outlet of a rectangular domain using the ”complete”
treatment of the viscous term and minimizing functional (4.17) - toll = 10−7
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Figure 4.16: Axial (left) and tangential (right) velocity prescribing a mean pres-
sure P = 0 g/s2cm at the outlet of a trapezoidal domain using the ”complete”
treatment of the viscous term and minimizing functional (4.15) - toll = 10−7

Figure 4.17: Axial (left) and tangential (right) velocity prescribing a mean pres-
sure P = 0 g/s2cm at the outlet of a trapezoidal domain using the ”complete”
treatment of the viscous term and minimizing functional (4.17) - toll = 10−7
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