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Chapter 1

Introduction to computational

haemodynamics

The cardiovascular system has the task of supplying the human organs with
oxigen and nutrients. Its main components are the heart, the arteries and
the veins. The large (systemic) circulation brings oxygenated blood from the
left ventricle via the aorta to the various organs through the arterial system,
then brings it back through the venous system and the vena cava to the
right atrium. The small circulation connects the heart and the lungs. Blood
is pumped from the right ventricle via the pulmonary artery to the lungs,
then via the pulmonary vein oxigenated blood returns to the heart, where is
pumped to all organs.[3]

The fundamental importance of cardiovascular system in life led some of
the greatest scientist of all time as Aristoteles, Euler, Bernoulli to its study.
In modern times the great social impacts of cardiovascular diseases, respon-
sible today of about 40 % of deaths in developed countries, gave further
motivation to study in deep how heart and blood vessel's work[3]. Until
Seventies the only way to study cardiovascular system were experiments on
animals and in vitro. Later, thanks to the great improvement in computing
power, suitable algoritms have been developed such that, starting from realis-
tic geometries and clinical data obtained from exams as magnetic resonance,
digital angiography, Doppler anemometry [6], they can simulate blood �ow.
In this way can be valued data that can not be obtained from laboratory
experiments, like shear stress on vessel's wall, and so improve the knowledge
of circulatory system.[3]
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Figure 1.1: A representation of the main blood vessels and of the heart

Simulation of blood �ow involves some mathematical di�culties. The
�rst, and perhaps more relevant, is the unsteadiness of blood �ow. The arte-
rial pulsatility induced by the the heart action strongly in�uences haemody-
namics [21]. Fast transients are therefore a relevant feature of blood �ow and
speci�c numerical techniques for their reliable simulations are required, par-
ticularly when one is interested in blood �ow in large arteries (those whose
diameter is above 0.4mm)[18].

Another serious di�culty is that haemodynamics includes di�erent phe-
nomena interacting among them. At the mathematical level, this implies the
coupling of di�erent models acting either in the same computational domain
or in adjacent subdomains and related by appropriate interface or matching
conditions [1]. Their numerical treatment then require the formulation of
appropriate algorithms to treat these coupling conditions[18].

A further important feature of haemodynamic problems is the presence of
multiple scales in both time and space. An illustrative instance is represented
by the regulation of blood �ow distribution. A stenosis (i.e a signi�cant lu-
men reduction) in an artery does not necessarily cause a relevant reduction of
blood supply to the downstream compartments. Indeed blood may be redis-
tributed through other vessels and continue to ensure an almost physiological
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value of blood �ow. These changes are activated by biochemical mechanisms
which govern vessel dilatation and may even drive the oxygen exchange be-
tween blood and tissues. Here, we face di�erent time scales (blood �ow and
regulation mechanisms) and spatial scales (the local heamodynamics and the
global circulatory system)[18].

Computational haemodynamics can be helpful not only to study and bet-
ter understand the blood dynamics in a given vascular district or but also
for solve inverse problems, for example determine the optimal shape of a
prosthetic implant to guarantee certain values of blood �ow in a organ. The
major di�culty in solving inverse problems in general is represented by the
severe computational costs. Optimization solvers are usually based on it-
erative procedures and this could be prohibitely expensive if each iteration
requires the solution of a system of non-linear time-dependent partial di�er-
ential equations. For this reason, speci�c techniques are under development,
aiming at reducing the computational costs[18].

In this thesis work is exposed the problem of the simulation of an artery
using the Finite Elements Method. The object of study was the left carotids,
the intent was to obtain information of how important parameters of the
blood �ow and the vessel's wall change in presence of a atherosclerotic plaque
at the bifurcation of the common carotid. From the mathematical point of
view this problem involves some of the mathematical di�culties exposed
above, in particular the problem to have a �uid and a structure that under-
goes large deformations interacting between them (�uid structure interaction,
or FSI, problem). A possible mathematical model that traeats this problem
will be exposed in chapter two, then in chapter three will be explained the
numerical techniques used to solve the problem and �nally in chapter four
will be showed the results obtained from the simulations .
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Chapter 2

Mathematical description of the

problem

In this chapter the mathematical model used to descibe blood �ow in human
carotids will be presented. In section 2.1 the reology model chosed to repre-
sent blood will be showed and also how the problem of describe a �uid that
�ow in a moving domain have been solved. In section 2.2 the equations and
the constituive law used to model vessel's wall will be exposed. In section
2.3 how the two problems are coupled will be explained.

2.1 Fluids equations

Blood is a solution of di�erent tipe of particles (such as red blood cells, white
blood cells, platelets) in an aqueous solution called plasma.

Figure 2.1: Blood Composition. Percentuals of main components are reported
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Blood in general is charcterized by a non constant density and features
a compressible behaviour. However, considering large vessel (diameter>0.1
cm), as carotids are, we can assume it is homogeneous and incompressible
[15]. Moreover, in such districts, it can be assumed to be Newtonian, that is
the relation between stress and strain is assumed to be linear. Therefore we
can model blood using Navier-Stokes equations. Another important thing is
that is not necessary to indroduce a turbulence model because blood �ow,
most often, it is laminar. In normal physiological situations, the values of
the Reynolds number 1 reached in the cardiovascular system do not allow the
formation of full scale turbulence[18], as it can be seen in the following table.

Vessel Diameter [cm] Velocity [cm/s] Reynold's Number
Aorta 2.5 48 3400
Arteries 0.4 45 500
Arterioles 0.005 5 0.7
Capillaries 0.0008 0.1 0.002
Venules 0.002 0.2 0.01
Veins 0.5 10 140
Vena Cava 3 38 3300

Table 2.1: Blood vessels types and their main characteristics

Fluid equations will be written using Arbitrarian Lagrangian Eulerian

formulation. Is necessary use this formulation because the �uid domain
boundary is composed by a physical boundary (the vessel's wall) that is
moving and arti�cial boundaries (the inlet and outlet sections) that must
remain �xed during the time interval in which the problem will be solved.

2.1.1 Navier-Stokes equations

Navier-Stokes equations for an incompressible, homogenous �uid can be writ-
ten in this way:

ρf
Duf
Dt

+∇ · T f (uf , p) = f f in [0, T ]× Ωt
f

∇ · uf = 0 in [0, T ]× Ωt
f .

(2.1)

1Reynold's Number is an adimensional quantity de�ned as Re = ρUL
µ where ρ is the

�uid density, U the velocity of the �uid, L a characteristic lenght (in our case vessel's
diameter) and µ the dynamic viscosity. Usually if Re < 4 · 103 it can be assumed the �ow
is not turbulent
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The �rst of (2.1) come from momentum conservation, while the second, also
called the continuity equation, represents the mass conservation.

Ωt
f is the domain of the �uid problem at the time instant t, uf is the �uid

velocity vector, ρf is the density of the �uid (assumed constant with time),
f f an external force per unit of volume (usually gravity).

T f is the �uid stress tensor, that for a Newtonian �uid can be written as
a linear function of the velocity gradient:

T = −pI + µ(∇uf +∇utf ),

where p is the pressure, I the identity matrix and µ the dinamic viscosity,

assumed constant.
Duf
Dt

is called the material derivative. Its formulation

depend of which formulation for the reference system is chosen.

Eulerian and Lagrangian formulation

In an Eulerian reference system the material derivative of a generic scalar
function g is de�ned as:

Dg

Dt
=
∂g

∂t
+ uf · ∇g, (2.2)

instead a Lagrangian reference system, the material derivative is written:

Dg

Dt
=
∂g

∂t
. (2.3)

The di�erence between the two systems is that in the (2.2) the attention is
focused on one point in the domain and is computed the changing of the
value of g in that point. Instead in the (2.3) the attention is pointed on the
�uid particle that occupy a certain position at the initial time instant and is
computed the value that g assume following the trajectory of the particle.

Eulerian Formulation is not suited for our puropose beacuse is character-
ized by a �xed frame, while we want a frame that follow the movement of the
domain. Also Lagrangian formulation is not suited because is characterized
by a frame following the �uid particles, while we want to keep �x the domain
at the inlet and outlet sections.
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Figure 2.2: Di�erences by Lagrangian (left) and Eulerian formulation

One of the possible solutions of this problem is write the �uid equations
in an Arbitriarian Lagrangian Eulerian (ALE) Formulation.

2.1.2 Arbitrarian Lagrangian Eulerian formulation of

Navier-Stokes equations

Let At be a map which at each t ∈ [0, T ] associates a point x̃ of the reference

con�guration Ω̃f (the domain con�guration at time t = 0) to a point x in
the current con�guration Ωt

f ,

At : Ω̃f ⊂ R3 → Ωt
f ⊂ R3, x(x̃, t) = At(x̃).

At is arbitrary, the only requirement is that it follows the moving interface.
In our case the deformation of the domain is caused by the action that the
�uit exert on the vessel but let's do an intermediate step and suppose to
know the displacement h : ∂Ω̃f → ∂ΩT

f of the moving boundary. In order
to reconstruct the �uid domain displacement η̃m also the internal points, we

consider an harmonic extension of the the datum h. Given Ω̃f and h, �nd
η̃m : Ω→ ΩT

f such that {
−∆η̃m = 0 in Ω̃f ,

η̃m = h on ∂Ω̃f .
(2.4)

The �uid domain points are moved accordingly to 2.4

x = x̃+ η̃m,

and we can also �nd �uid domain velocity

um =
∂η̃m
∂t

.
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Let v : Ωt
f × [0, T ] → R be a function living in the n the current �uid

con�guration and ṽ := v ◦ At the corresponding function on the reference
con�guration, de�ned as

ṽ : Ω̃f × [0, T ]→ R, ṽ(x̃, t) := v(At(x̃), t).

The symbol
DA

Dt
will indicate the time derivative on the ALE frame, written

in the spatial coordinates. It is de�ned as

DAv

Dt
: Ωt

f × [t0, T ]→ R,

Using the classical rule to the time derivative, we have the following relation
for a given function w

DAw

Dt
=
∂w

∂t
+
DAx

Dt
· ∇w =

∂w

∂t
+ um · ∇w. (2.5)

In Eulerian formulation the conservation of momentum law is the following:

ρf
∂uf
∂t

+ ρf (uf · ∇)uf +∇ · T f (uf , p) = f f , (2.6)

but going to (2.5) we can write
∂uf
∂t

=
DAuf
Dt

− um · ∇uf so substituting

this in (2.3) the Navier-Stokes equations in ALE formulation read:
ρf
DAuf
Dt

+ ρf ((uf − um) · ∇)uf +∇ · T f (uf , p) = f f in [0, T ]× Ωt
f

∇ · uf = 0 in [0, T ]× Ωt
f .

(2.7)
Equations (2.4) must be supplied with initial conditions for the velocity �eld

uf (x, 0) = uf,0 in Ω̃f ,

and suitable boundary conditions. Let the boundary ∂Ωt
f be splitted into

two non-overlapping parts ∂Ωt
f = Γtf,D ∪Γtf,N . We will consider the following

boundary conditions {
uf = φf on Γtf,D,
T f · n = ψf on Γtf,N ,

where n is the unit outward normal vector to ∂Ωt
f and φf and ψf are two

given data with enough regularity.
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Figure 2.3: ALE formulation. The ALE frame described by map At which introduces
a (�xed) frame of reference which is mapped at every time to the desired physical domain

2.2 Finite elasticity equations

Blood vessels' walls have a complex structure and the development of a math-
ematical model for describe their mechanical behaviour can be quite di�cult.
Their structure is composed by some layers with di�erent caracteristic [12] :

• Tunica intima or endothelium is the more internal layer. is com-
posed by cells that act as a "sensor" of the stress and secrete substances
that control wall's composition.

• Tunica media is made by muscle cells circumferentially oriented, elas-
tics �bers to permit distentions and collagen to guaratee resistance.

• Tunica extrema or Adventia, made of �broblasts and collagen hav-
ing again the purpose of increase mechanical resistance.
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Figure 2.4: Artery section. The artery wall is made by di�erent layers

It is quite impossibile reproduce in laboratory the exact behaviour of the
vessels wall: �rst of all because they are made by muscle living tissue, then
experiments with dead tissue can give results not totally exact but also be-
cause their beahviour is also function of the surrounding tissue, impossible
to reproduce [17].

Is necessary then to use a model that is at the same time realistic and not
too di�cult to solve. Since we are treating large deformation we modeled the
structure using the equations of �nite elasticity, while for the reology of the
material of the vessel a non-linear, exponential elasticity constitutive law has
been used. The conservation of momentum law in Lagrangian formulation
reads as follow:

∂2η̃s
∂t2
−∇ · T̃ s(η̃s) = f s in (0, T )× Ω̃0

s, (2.8)

Ω̃0
s is the reference con�guration of the structure. η̃s represent the displace-

ment, de�ned as:

η̃s(x̃, t) = xxx(x̃xx, t)− x̃xx,

x(x̃, t) being the vector that identify the position at the time instant t of the

point that in the reference con�guration occupy the position x̃. T̃ s is called
the Piola-Kircho� stress tensor and it's linked to the Cauchy stress tensor
by the relation:

T̃TT s = JTTT sFFF
−T ,

where
FFF = ∇̃η̃s̃ηs̃ηs + I
J = det(FFF ),

FFF is called deformation gradient. Then a relation linking η̃s̃ηs̃ηs to T̃ s is needed.
This relation is called Constitutive law of the material. An exponential rela-
tion has been choosed, whose expression is the following [16]:
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T̃TT s = αJ
2
3 (FFF − 1

3
tr(CCC)FFF−T )eγ(J

2
3 tr(CCC)−3) +

κ

2
(J − 1 +

1

J
lnJ)JFFF−T ,

where

CCC = FFF TFFF ,

and κ and α are respectively the bulk modulus and the shear modulus. For
small deformations such material behaves as a linear structure described by
the in�nitesimal elasticity, characterized by a Poisson's ratio ν and a Young
modulus E related to κ and α as follows

κ =
E

3(1− 2ν)
, α =

E

2(1 + ν)
.

The parameter γ is peculiar of this kind of material and tunes the sti�ness
for large displacements.

2.3 Coupled Fluid-Structure interaction (FSI)

problem

A �uid-structure interaction (FSI) problem arises when a consistent amount
of energy is exchanged between a �uid and a structure. The study of FSI
problems has important applications in biomechanics but also in the design
of many engineering systems, e.g. aircraft and bridges.

In the case here treated here we consider the mutual interaction between
the blood and an arterial vessel. One of the most important features of
blood �ow in arteries is its unsteadiness, or, more precisely, pulsatility. We
can identify two phases: during the systole, that in physiological cases oc-
cupies one third of the whole cardiac cycle, blood pressure rise and reach
its maximum (in normal situations between 90 and 120 mmHg), due to the
contaction of heart's left ventricle. During this phase the vessel's wall defor-
mation accumulates part of the mechanical energy as elastic energy, which
will afterwards be returned back to the blood during the diastole , the phase
in which blood pressure decrease and reach its basis level (normally between
60 and 80 mmHg). This blood-vessel interaction mechanism is very impor-
tant because allows to keep almost uniform values of blood's velocity and
pressure at capillary level [13].

There are two possible ways to made a mathematical model for the FS
interaction in arteries:
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⇒ In a Global approach arteries are described as a whole continuum that
includes the innermost �uid region and the outer solid wall. The mathe-
matical complexity, combined with the high computing power requested
by this model generally go beyond the realistic possibilities o�ered by
present day computer simulations[13];

⇒ In a Coupled approach we consider two di�erent submodels, one for
�uid, another one for the structure, togheter with suitable matching
conditions which play the role of boundary conditions of the submodels.

We have here considered a Coupled approach using the models that have
been exposed in the previous pages: the Navier-Stokes equations written
in ALE formulation for the �uid problems, the equations of �nite elasticity
for the structure problem and the harmonic extension for the �uid domain
problem. There is no structure domain problem since it coincides with the
structure problem itself, since it has been written in Lagrangian formulation.
From the mathematical viewpoint the problem is very challenging due to its
nonlinear nature.

The conditions that link structure and �uid problem have to be physically
consistent but also ensure the well posedness of the mathematical problem,
indeed although each submodel yiedls a stable problem it is no guaranteed
that the global problem is stable too[13]. The linking conditions that have
been used are:

Physical interface continuity

1. the �uid and the structure particles have to share the same velocity at

the FS interface (no-slip condition) → uf =
∂ηsηsηs
∂t

on Γt

2. the �uid and the structure have to extert the same normal stresses at
the FS interface (third Newton's law) → T s · n = T f · n on Γt

where Γt = Ωt
f ∩ Ωt

s and n is the local normal vector of Γt exiting from
the �uid domain.

Geometrical interface continuity

The �uid and structure domains have to share to same displacement at the
FS interface → η̃m = η̃s on Γ̃, where Γ̃ = Ω̃f ∩ Ω̃s.

Then the strong formulation of the FSI problem reads: �nd �uid velocity

17



uf , �uid pressure pf , �uid domain displacement ηm and structure displace-
ment ηs such that:



ρf
DAuf
Dt

+ ρf ((uf − um) · ∇)uf +∇ · T f (uf , p) = f f in [0, T ]× Ωt
f

∇ · uf = 0 in [0, T ]× Ωt
f

∂2η̃̃η̃ηs
∂t2
−∇ · T̃ s(η̃̃η̃ηs) = fs in [0, T ]× Ω̃0

s

uf =
∂ηsηsηs
∂t

on [0, T ]× Γt

T s · n = T f · n on [0, T ]× Γt

−∆η̃m = 0 in [0, T ]× Ω̃f

η̃m = η̃s on [0, T ]× Γ̃,
(2.9)

To solve the problem are also necessaries suitable initial and boundary con-
ditions on (δΩs ∪ δΩf \ Γ).

Nonlinear behaviour of the problem is due to the convective term of (2.9) 1

and the non-linear constitutive law chosed for T̃ s in equation (2.9)3. More-
over, since the interface position of the �uid domain must coincide with the
solid position at the interface, that is unknown since it depends on the in-
teraction between the two subproblems, introduce a source of non-linearity
known as geometrical coupling [16].

Although many reasonable simpli�cation have been adopted both for
de�ninion of the �uid and structure problem , �nd an analitical solution
of the FSI coupled problem is not possible. Therefore we have to discretize
the problem in space and in time. This will be made using Finite Element

Method and Backward Euler Method. Moreover we need to introduce an
algorithm that decouple the structure and �uid subproblems and treat the
nonlinearities that are present. These will be the topics of the next chapter.
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Chapter 3

Numerical discretization

As we have seen in the previous chapter the FSI problem can be written as a
system of partial di�erential equations (PDE). In general it is not possible to
�nd an analitical solution of PDE so it is necessary to use numerical methods.
The problems we have to face are the following:

• Discretize the problem with respect to space variables: this will be
made by using the Finite Element Method (FEM). In section 3.1 will
be made an introduction to this mehod.

• Discretize the problem with respect to time variable: this will be made
using the �nite di�erence method, in particular using the backward
Euler method. This will be presented in section 3.2.

• At each timestep solve the non linear FSI problem handling the physi-
cal and geometrical interface conditions togheter with the constituitive
non-linearities present in the �uid and structure subproblems. The
algorithm chosen to solve this problem will be presented in section 3.3.

3.1 A brief introduction to the FEM

The �nite element method is a numerical technique for �nding approximate
solutions to partial di�erential equations (PDE) and their systems. FEM is
a special case of the more general Galerkin method with polynomial approx-
imation functions. With FEM we get an approximate solution of PDE by
means of a system of algebraic equations for steady state problems or system
of ordinary di�erential equations for transient problems (this last is our case,
where temporal derivatives will be approximated through �nite di�erences).
In this section we are going to take as an example a very simple di�erential
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problem, the Poisson's equation with a Dirichlet condition, just to explain
brie�y FEM . See [19] for further details.

The model problem is: Find u(x1, x2) so that

{
−∆u = f in Ω,
u = 0 on ∂Ω,

(3.1)

where Ω ⊂ R2 is a limited domain and ∂Ω his boundary. This formulation of
the problem is in general not suitable for the numerical solution. Indeed it
can be showed that also if physical solutions of a problem modeled by (3.1)
may exist, it can be not C2, so that the Laplace operator in (3.1) would not
take sense. To make an example of this problem we reduce our tractation to
a 1D problem

{
−u′′

= f(x), 0 < x < 1,
u(0) = 0, u(1) = 0.

(3.2)

This problem represents the displacement of a a wire �xed at his sides, with a
unitary tension, in the hypothesis of little displacement, with f that represent
the force perpendicular to the wire for unit lenght. We can imagine now that
f is de�ned as:

f(x) =

{
0 if x < 0.4, x > 0.6

1 if 0.4 < x < 0.6,

a solution of the problem exist and is the following:

u(x) =



− 1

10
x if x ∈ [0, 0.4],

1

2
x2 − 1

2
x− 2

25
if x ∈ [0.4, 0.6],

− 1

10
(1− x) if x ∈ [0.6, 1],
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Figure 3.1: The solution of the problem (3.2) with the condition (3.1) (displayed above)

As we can see the solution is only C1. This is because in our example
f 6∈ C0 . We need then to introduce a di�erent formulation that is called
Weak formulation ( (3.1) and (3.2) are called Strong formulation) to extend
the validity of the problem. Weak formulation will also be useful for the
numerical discretization.

3.1.1 Weak formulation of the Poisson's problem

We multiply every term of the �rst equation of (3.1)1 for an arbitrary function
v, that we call test function, and we integrate on all Ω to obtain:

−
∫

Ω

∆uv =

∫
Ω

fv (3.3)

We need now to manage (3.3) to eliminate the second order derivative, so
the solution will require less regularity (in this way the solution will need to
be only C1 and not C2). Green's formula say that we can write:

−
∫

Ω

∆uv dΩ =

∫
Ω

∇u · ∇v dΩ−
∫
∂Ω

∂u

∂n
v dγ.

Since we are solving a homogeneous Dirichlet problem, we choose only test
functions that vanish on ∂Ω, so that we can write this weak formulation for
problem (3.1):

�nd u ∈ V :

∫
Ω

∇u · ∇v dΩ =

∫
Ω

fv dΩ ∀v ∈ V, (3.4)
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having de�ned the following functional spaces:

L2(Ω) = {g : Ω→ R :

∫
Ω

g2dΩ < +∞},

H1(Ω) = {v : Ω→ R : v ∈ L2(Ω),
∂v

∂xi
∈ L2(Ω), i = 1, 2},

V = H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on δΩ}.

It is possible to show that by requiring that (3.4) is satis�ed for all v ∈ V
the solution of (3.4) coincides with that of (3.1) for regular data. However,
with (3.4) it is required that f ∈ L2(Ω), no more f ∈ C0(Ω) as for (3.1).
Then the weak formulation extends the strong formulation to cases as the one
described in the previous section. Moreover it is the starting point to build
the FEM system. We can rewrite 3.4 introducing the following notations:

a : V × V → R, a(u, v) =

∫
Ω

∇u · ∇v dΩ,

F : V → R, F (v) =

∫
Ω

fv dΩ,

So that the problem can be written as:

�nd u ∈ V : a(u, v) = F (v) ∀v ∈ V. (3.5)

3.1.2 The Galerkin's problem

We now de�ne Vh ⊂ V as family of functional spaces dependent on a positive
parameter h so that dimVh = Nh < ∞ and limh→0 Vh = V . This mean
that every function of Vh space can be written as a linear combination of Nh

basis {ϕj, j = 1 . . . Nh}. We can now approximate the problem reducing the
functional space in which we are searching its solution just to Vh and write:

�nd uh ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh. (3.6)

We observe that we need only that (3.6) has to be satis�ed for every basis
function of Vh because every other function of Vh can be written as linear
combination of the basis functions. Then we can rewrite te problem as:

a(uh, ϕi) = F (ϕi), i = 1, 2, . . . , Nh. (3.7)
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But since uh ∈ Vh, we have

uh(x) =

Nh∑
j=1

ujϕj(x), (3.8)

where uj, j = 1, . . . , Nh, are the unknown coe�cients. The problem become:

Nh∑
j=1

uja(ϕjϕi) = F (ϕi), i = 1, 2, . . . , Nh. (3.9)

Now we denote with: A the matrix with elements aij = a(ϕi, ϕj), with u
the vector that has for components the unknown coe�cients uj and with
f = [fi] the vector with components fi = F (ϕi). Then equation (3.9) can be
rewritten as the following linear sistem:

Au = f . (3.10)

3.1.3 Solution of the Poisson's problem with FEM

Coming back to the speci�c case of the Poisson's problem, this can be rewrit-
ten as:

�nd uh ∈ Vh :

∫
Ω

∇uh · ∇vh dΩ =

∫
Ω

fvh dΩ ∀vh ∈ Vh

We can imagine now to �nd in the domain Ω some points, that we'll call
nodes N j with i = 1, . . . , Nh. From this descent that a basis of the Vh space
can be imaginated as the set of the ϕj ∈ Vh, j = 1, . . . , Nh so that:

ϕj(N i) = δij =

{
0 i 6= j

1 i = j

Figure 3.2: A basis function ϕj
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Thanks to (3.9) we can then write the problem as the following linear
sistem:

Nh∑
j=1

uj

∫
Ω

∇ϕj · ∇ϕi dΩ =

∫
Ω

fϕi dΩ i = 1, . . . , Nh. (3.11)

Then the matrix and and the vector of (3.10) in this speci�c case are:

A = [aij] with aij =

∫
Ω

∇ϕj · ∇ϕi dΩ

u = [uj] with uj = uh(N j), f = [fj] with fj =

∫
Ω

fϕi dΩ.

It can be demonstrated that if:

lim
h→0

infvh∈Vh‖v − vh‖ = 0 ∀v ∈ V,

FEM converge to the exact solution u, that is:

lim
h→0
‖u− uh‖ = 0.

It is important to notice that since the PDE we want to solve is linear 1

then we obtained a linear system. If the PDE is non-linear the system is
non-linear, and this will be our case.

3.2 Discretization of the problem in time

In the previous section we show the FEM formulation of the Poisson problem,
that is independent of time. In our problem instead time derivatives appears,
so we need to �nd before a way to approximate them and have a problem
that contain only space derivatives. Let write the strong formulation of the

1a PDE is de�ned linear when it depends lineary from the unkonwn function and its
derivatives
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problem, as seen in chapter 2.



ρf
DAuf
Dt

+ ρf ((uf − um) · ∇)uf +∇ · T f (uf , p) = f f in [0, T ]× Ωt
f

∇ · uf = 0 in [0, T ]× Ωt
f

∂2η̃̃η̃ηs
∂t2
−∇ · T̃ s(η̃̃η̃ηs) = fs in [0, T ]× Ω̃0

s

uf =
∂ηsηsηs
∂t

on [0, T ]× Γt

T s · n = T f · n on [0, T ]× Γt

−∆η̃m = 0 in [0, T ]× Ω̃f

η̃m = η̃s on [0, T ]× Γ̃.
(3.12)

The choice that have been made for approximate time derivatives is to use
Backward Euler Method. This method requires to split time domain [0, T ] in
n intervals of lenght ∆t. We can identify then n+ 1 time istants, the generic
one can be written as tn = n∆t, n = 0, . . . , n + 1. Backward Euler Method

approximates a function time derivative at the the instant n + 1 using the
values assumed by the function at the previous time instants [4]. If un+1

f

and η̃n+1
s are the approximated values of the �uid velocity and structure

displacement at the instant n+ 1 we can de�ne:

DAuf
Dt

:=
un+1
f − unf

∆t
,

∂ηs
∂t

:=
ηn+1
s − ηns

∆t
,

∂2η̃s
∂t2

:=
η̃n+1
s − 2η̃ns + η̃n−1

s

∆t2
,

and write the strong formulation of the time discrete problem:

Fluid-Structure problem

Given the (unknown) �uid domain velocity un+1
m and �uid domain Ωn+1

f , the

solution at previous time steps, and functions fn+1
f , fn+1

s , �nd �uid velocity

25



un+1
f , pressure pn+1

f and structure displacement η̃n+1
s such that

ρf
un+1
f

∆t
+ ρf ((u

n+1
f − un+1

m ) · ∇)un+1
f +∇ · T f (u

n+1
f , pn+1

f ) = fn+1
f + ρf

unf
∆t

in Ωn+1
f ,

∇ · un+1
f = 0 in Ωn+1

f ,

ρs
η̃n+1
s

∆t2
−∇ · T̃ s(η̃

n+1
s ) = f̃

n+1

s + ρs
2η̃ns − η̃

n−1
s

∆t2
in Ω̃s,

un+1
f =

ηn+1
s − ηns

∆t
on Γn+1,

T n+1
s (ηn+1

s )n = T n+1
f (un+1

f , pn+1
f )n on Γn+1,

(3.13)

Geometry problem

Given the (unknown) interface structure displacement η̃s solve a harmonic
extension problem {

−∆η̃n+1
m = 0 in [0, T ]× Ω̃f

η̃n+1
m = η̃n+1

s on [0, T ]× Γ̃.
(3.14)

and then �nd accordingly the discrete �uid domain velocity ũn+1
m and the

points xn+1
f of the new �uid domain by

ũn+1
m :=

ηn+1
m − ηnm

∆t
, xn+1

f = x̃f + η̃n+1
m .

Backward Euler Method is a �rst order numerical method [4]. That is:∥∥∥∥∂uf∂t (tn,x)−
unf (x)− un−1

f (x)

∆t

∥∥∥∥ = O(∆t)

∥∥∥∥∂2η̃s
∂t2

(tn,x)− η̃
n
s (x)− 2η̃n−1

s (x) + η̃n−2
s (x)

∆t2

∥∥∥∥ = O(∆t)

3.3 Partioned Algorithms for the Numerical So-

lution

We are here interested in partitioned algorithms for the numerical solution
of the FSI problem, which consist in the successive solution of the three
subproblems in an iterative framework. The main problem we have to solve
are:
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1. The treatment of the geometrical interface condition, which enforces
the continuity of displacements at the FS interface between the �uid
and the structure domains;

2. The treatment of the constitutive non-linearities featured by the �uid
and the structure problems separately;

3. The treatment of the physical interface conditions, which enforce the
continuity of velocities and normal stresses at the �uid-structure inter-
face.

As will be showed in the next pages, the choice that have been made for
every instant of time is to make two iterative cycles: one external cycle that
treat togheter points 1 and 2 and one internal cycle for point 3, that is the
more critical, due to a phenomenon know as added-mass e�ect [14]. This
phenomenon made that the convergence for an iterative cycle of a FSI prob-
lem is slow if the densities of the �uid and the structure are the very similar,
as in our case. The convergence properties of the double-loop scheme can
be improved using Robin boundary condition at the �uid-structure interface
[9]. Moreover, when the densities are similar, it is not possible to consider
explicit coupling, so that the pysical interface conditions have to be imposed
exactly through an implicit treatment.

3.3.1 The double-loop iteration scheme

We now expose the double-loop iteration scheme with we have used to solve
the FSI problem. To do this we indroduce the following operators (time
index has been omitted):

• S(η̃s) to de�ne the structure problem

• F(uf − um) to de�ne the �uid problem

• H to de�ne the harmonic extension problem

• Gf and Gs to de�ne the forcing terms rispectively in the �uid and the
structure problem

We can notice that the �uid and structure problem operators depends
on the variables that we want calculate, highlighting the fact that these
problems are non-linear. Using the introduced operators the FSI problem
can be rewritten in this way:
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harmonic extension

{
Hη̃m = 0 in Ω̃f ,

η̃m = η̃s on Γ̃,

�uid problem F(uf − um)vf = Gf in Ωf ,

structure problem S(η̃s) = Gs in Ω̃s,

physical interface conditions

{
uf = us in Γ,

T s · n = T f · n in Γ,

where vf := (uf , pf ) is a notation that we use to collect the �uid unknowns

and us =
∂ηS
∂t

.

To solve the non-linearities present in the �uid and structure problem we
introduce the Newton method, usually used to �nd the roots of a non linear
real funtion f(x), where x is also a real number. Newton method is based
on a iterative cycle that reads:

f
′
(x(k))δx(k+1) = −f(x(k))

x(k+1) = x(k) + δx(k+1)

We decide, for reasons that will be clear later, to combine linearly the
two physical interface conditions, so that we obtain the following Robin-type
boundary conditions:{

αfuf + T f · n = αfus + T s · n
αsus − T s · n = αsuf − T f · n

where αf 6= αs are two parameters that will be discussed later. We can �-
nally write the double-loop cycle:

External loop (index k)

Given the solution at iteration k, solve at the current iteration k + 1 un-
til convergence
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(1) The harmonic extension{
H η̃k+1

m = 0 in Ω̃f

η̃k+1
m = η̃ks on Γ̃,

obtaining the new �uid domain Ωk+1
f and the �uid domain velocity

uk+1
m .

(2) The linearized FSI problem in a known domain. For its solution, we
consider the following partitioned algorithm:

Internal loop iterations (index l)

Given the solution at subiteration l − 1, solve at the current subit-
eration l until convergence.

(a) The �uid subproblem with a Robin condition at the FS interface{
∇vfF(ukf − uk+1

m )vk+1
f,l = Gf in Ωk

f

αfu
k+1
f,l + T k+1

f,l · n = αfu
k+1
s,l−1 + T k+1

s,l−1 · n on Γk+1

(b) The structure subproblem with a Robin condition at the FS in-
terface {

∇ηsS(η̃ks) δη̃
k+1
s,l = Gs − S(η̃ks) in Ω̃s

αsu
k+1
s,l + T k+1

s,l · n = αsu
k+1
f,l + T k+1

f,l · n on Γ̃

(c) Relaxation {
η̃k+1
s,l = ωη̃k+1

s,l + (1− ω)η̃k+1
s,l−1

T̃
k+1

s,l = ωT̃
k+1

s,l + (1− ω)T̃
k+1

s,l−1

where ω ∈ (0, 1).

We need then convergence criteria for both internal and external cycles.
For the internal cycle we proceed until:

‖η̃k+1
s,l − η̃

k+1
s,l−1‖+ ‖T k+1

s,l · n− T
k+1
s,l−1 · n‖ < ε1,

while for the external cycle we have the following criteria, respectivly for
the harmonic extensions:
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‖η̃k+1
m − η̃km‖ < ε2,

and for the non-linearities:

‖uk+1
f − ukf‖+ ‖pk+1

f − pkf‖ < ε3,

‖η̃k+1
s − η̃ks‖ < ε4,

when the criteria of the external cycle are satis�ed we can increment time
index.

It is important to notice that the PDE's that appear in the external cycle
are now all linear, because the operators that de�ne the two problems have
been linearized. This mean that they can be solved with FEM, as seen for
the Poisson's equation in section 3.1, because they discretiziation lead now
to a linear algebraic system.

The parameters αs and αf de�ne the convergence properties of the double-
loop algorithms. There are mathematical models that can de�ne this param-
eters to guarantee convergence and maximize its velocity. It can be noticed
that if αf → ∞ and αs → 0 we obtain the originary Dirichlet-Neumann
scheme, with Dirichlet interface conditions for the �uid problem and Neu-
mann interface conditions for the structure problem. This scheme is not
suited because it needs a very small relaxation to guarantee convergence and
this mean small convergence velocity [9]. This phenomenon is known be-
cause is responsible for the slow convergence of implicit Dirichlet-Neumann
schemes in typical haemodynamic applications [14]. The cause have to be
searched in the fact that we have considered blood as an incompressible �uid
and in the fact that ρf ≈ ρs [8] (blood, as all human tissues is made mainly
by water). If we use a Robin-Robin scheme, that mean to impose Robin type
interface conditions both for the �uid and structure problem, no relaxation
is needed, and this mean that the convergence velocity is appreciably higher
[9].
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Chapter 4

A clinical application

In this chapter a possible application of the mathematical tools explained in
the previous sections will be showed: the simulation of the �uid dynamics
in a real human carotid a�ected by atherosclerosis. A short introduction to
what is atherosclerosis will be made in section 4.1. We will explain the prob-
lems it poses to health and how it a�ect the geometry and the mechanical
characteristics of arteries. In section 4.2 we will discuss the choice of the
initial and boundary parameters necessary to de�ne the simulations and the
sensitivity of the numerical solution respect to the discretization chosen for
the domain. In section 4.3 we will expose the results obtained by the sim-
ulations of a carotid before and after a surgical operation of atherosclerotic
plaque removal, highlighting the di�erences in important parameters in the
two cases. Finally in section 4.4 there is a brief summary of the main results
obtained.

4.1 Introduction to Atherosclerosis

Atherosclerosis is a disease of arteries which results in a reduction of lumen
area (stenosis) and vessel's wall thickening and sti�ening caused mainly by a
build up of fatty material in the artery wall. This disease causes in general
a decrease of blood �ow through the diseased artery [7].
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Figure 4.1: Stenosis. In this micrograph of a coronary artery is very evident the reduction
in lumen

Atherosclerotic disease of the carotid arteries, that supply the head and
neck with oxygenated blood, is responsible for 20 % - 30 % of all strokes.
Stroke, or cerebrovascular accident (CVA), is the rapid loss of brain func-
tions due to disturbance in the blood supply to the brain. In Italy, as in
many developed countries, stroke is the �rst cause of disability, the second
of dementia and the third of death[16]. Left common carothid artery orig-
inates directly from aorta while right common carothid originates from the
right subclavia artery. In the neck they both divide into two other vessels
called external and internal carotid arteries. The point at which the com-
mon carotid divides is very often the place of formation of an atherosclerotic
plaque.

Figure 4.2: Carotid artery. We can see carotid artery position and also its conformation

There are many factors that play a role in the development of atheroscle-
rosis. Some of these factors are not depending of lifestyle and include age,
race, sex, genetic, diabetes mellitus, hypertension. Other are modi�able and
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include smoking, hyperlipidemia, sedentary habits, alcohol and substance
abuse. The geometry of the carotid bifurcation itself can be considered a
risk factor [2].

Atherosclerosis is a chronic disease. The process that leads to the forma-
tion of atherosclerotic plaque can last many years. Most people with carotid
stenosis have no symptoms until the artery becomes severely narrowed. As
we age, hypertension and small injuries to the blood vessel wall can allow
plaque formation. Plaque is a sticky substance made of cholesterol, calcium
and other �brous material. Over time, plaque deposits inside the inner wall
of the artery can form a large mass that narrows the lumen ( i.e. the in-
side diameter of the artery). As the atherosclerotic plaque develops, the
biologic response is cover the plaque with a �brous cap. Unfortunately, over
time the �brous cap may rupture and release the underlying debris into the
circulation.

Stenosis is not the only e�ect. Artherosclerotic changes include di�use
intimal thickening that results from the migration of medial smooth muscles
cells into the subendothelial space. This fact causes the change of the me-
chanical characteristic of the artierial structure where a plaque has formed.
Some works, as [7] , pointed out a non-elastic behaviour of the atherosclerotic
arteries. However consider a more simple model is possible, taking account
of the hardening caused by the plaque setting the elastic coe�cient of the
tissue where the plaque is situated higher than in the rest of the wall [16].

Surgical treatment is generally recommended for patients who have suf-
fered strokes or have a moderate to high grade of carotid stenosis. The
operation consist in remove plaque and so enlarge the artery lumen to allow
more blood �ow to the brain.

In this work we considered a patient that had been subjected to such
surgical treatment close to the bifurcation of the left common carotid. MRI
images 1 before and after the plaque removal allowed to reconstruct the com-
putational domain of the patient at hand before and after the operation. We
considered three con�gurations:

⇒ The carotid after the operation;

⇒ The carotid before the operation with uniform tissues characteristics;

⇒ The carotid before the operation increasing tissues sti�ness where the
plaque was.

1Magnetic resonance imaging (MRI) also called nuclear magnetic resonance imaging
(NMRI), or magnetic resonance tomography (MRT) is a medical imaging technique used
in radiology to visualize internal structures of the body
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4.2 Setting of the boundary conditions and sen-

sitivity of the numerical solution respect to

the mesh

Before doing the simulations we had to set some initial parameters related
to the boundary conditions. We will explain later in this section how had
been formulated the boundary conditions. We performed simulations of the
carotid after surgery with the aim of setting these parameters in order to ob-
tain physiological values of pressure at systole (between 110 and 120 mmHg)
and diastole (between 70 and 80 mmHg). Furthermore we made that the
value of maximum velocity at systole in the entry section was as close as
possible to the available clinical data for the patient examined.

We proceeded in this way: we made two meshes (i.e. a discretization
in nodes for the domain), that we call Mesh1 and Mesh2. In both meshes
the distance h between nodes was de�ned as h = ε

√
r where r is the internal

radius of carotid's lumen in cm and ε is a parameter at our disposal. In Mesh1
ε = 0.5 and in Mesh2 ε = 0.35. We ran all the simulations using Mesh1 with
∆t = 2 · 10−3s and all the simulation using Mesh2 with ∆t = 1 · 10−3s. First
we set all the parameters running several simulations with Mesh1. This mesh
require less computing power and less time for one simulation, but guarantees
in principle less accurate results. Afterwards we ran a simulation with Mesh
2 using the parameters obtained with Mesh1 to verify the goodness of the
choice.

Figure 4.3: Mesh1 and Mesh2 for the �uid domain
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1) Robin condition for the surrounding tissue

Vessels are constrained radially by the surrounding tissue. We used a 0D
model to describe the presence of a surrounding tissue around the vessel. In
particular, we prescribed the following robin boundary condition:

αeη̃s + T̃ sñ = Pextñ on Γout,

where Γout is the external surface of the vessel and ñ is the normal vector
exiting from the structure domain in the reference con�guration. We imposed
αe = 3 · 106dyne/cm3.

Figure 4.4: External Tissue. In blue is evideced the Γout surface

2) Absorbing boundary condition on the outlet sections

We propose to use a resistance absorbing boundary condition at on the outlet
surfaces, that reads:

1

|Γout|

∫
Γout

(T fn) · n dσ +R

∫
Γout

u · n dσ = Pext

where Γout are the outlet surfaces and R = R(Pext). The value of R has been
determined by coupling the 3D model for the part of artery simulated with a
1D model that represent the circulatory system downstream(see [16, 10] for
further details). This boundary condition allows us to reduce signi�cantly
the spurious pressure wave re�ections that typically appear in arti�cially
truncated computational domains. However experience show that is not re-
alistic use the parameter R alone, because in the reality some pressure waves
re�ection from the rest of the circulatory system exist. So we corrected the
parameter R with a coe�cient named ξ, so that the absorbing condition is
de�ned by the parameter ξR.

3) Flux on the inlet surface

The �ow rate Fin is imposed at the entry region at every time instant through
the Lagrange multipliers method (see [11, 20]): Fin = kAvec, where
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k ∈ (0, 1) , A is the inlet area in cm2 and vec, expressed in cm/s, is a clinical
data obtained from an Eco Color Doppler exam . This exam gives us an
histogram of the maximum velocity of the red blood cells over small volumes
of the lumen(see �gure 4.5). We need to introduce the parameter k because
the maximum computed velocity is not equal to vec. We �xed this parameter
in order to obtain a value for the maximum velocity at inlet section equal to
vec at systole (73 cm/s).

Figure 4.5: The velocity data from Eco Color Doppler

We ran several simulations with Mesh1 until we identi�ed the following
set of parameters as the best for the purposes we had: Pext = 60mmHg,
k = 0.5, ξ = 1.1. Then we ran a simulation with Mesh2 using the same
parameters. The values obtained for pressure are showed in table 4.1.

Systole Diastole
Mesh 1 122 76
Mesh 2 121 76

Table 4.1: The values of pressure in mmHg obtained with the two meshes

Moreover we achieved a value of 72 cm/s for the maximum velocity at
systole with Mesh1 and 75cm/s for Mesh2.

We can see that there are very little di�erences between the results ob-
tained with the two meshes. This is a very importan results, because these
parameters are speci�c of the patient. This mean that if we want to take in
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exam another patient we can set the parameters running simulations with
Mesh1 without the necessity to do a simulation with Mesh2 for validate them.
Then we can save time (the simulation of an heartbeat using Mesh1 takes
about one week, while with Mesh2 takes one month!) and computing power.

4.3 Comparison before and after the removal

of the plaque

We made three simulations to compare the behaviour of the blood �ux and
of the vessel's wall in presence of an atherosclerotic plaque. In the �rst we
simulated the blood �ow in the carotid after the removal of the plaque. In the
second we considered the same vessel before the surgical operation of plaque
removal but without considering the tissue sti�ening caused by atheroscle-
rosis. Finally we ran a simulation in which to simulate the hardening of the
tissues in presence of a plaque we set the parameter αe = 1 · 107dyne/cm3

for the surrounding tissue in the place where the plaque was.

We ran all the simulation using meshes with the parameter ε = 0, 5. We
are conscious that using a smaller ε parameter we could get more accurate
results but the time at our disposal not allowed us this thing.

For all simulations we impose at the entry section the same velocity data,
those obtained after the operation. Indeed our aim was not simulate reality
but try to understand how, starting from the same conditions, the change in
geometry and vessel's mechanical characteristic can in�uence blood �ow.

The considered patient had a serious atherosclerotic condition at the bi-
furcation of the left common carothid that results in a reduction of the lumen
of about 70 % (see image 4.6). Indeed the lumen area in the considered point
was about 0.42 cm2 after surgery , while before of about 0.15 cm2. All simu-
lations ran two cardiac cycles but for the results we consider only the second
one, because we considered that the �rst one had less value.
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Figure 4.6: The carotid before(left) and after the surgical tratment. Is very evident the
reduction in lumen. In yellow we evidenced the plaque

4.3.1 Mean pressure and �ux

To value the �ux and mean pressure we considered a section just before the
bifurcation, that is the place where the plaque was. In the following images
we can see the section considered and also the results obtained.

Figure 4.7: The section cosidered for value mean pressure and �ux
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Figure 4.8: The results for the mean pressure during the second heartbeat. In green the
result for the carotid after surgical operation. In blue the results for the carotid before the
operation and with homogeneous tissue characteristics, in red the results for the carotid
before operation with a more rigid tissue near the plaque.

Figure 4.9: The results for the �ux during the second heartbeat. In green the result for the
carotid after surgical operation. In blue the results for the carotid before the operation and
with homogeneous tissue characteristics, in red the results for the carotid before operation
with a more rigid tissue near the plaque.

As we can see in �gure 4.8 the pressure at systole is signi�cantly higher in
the carotid before surgery and this fact agrees with the medical experience,
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but it is very important to notice that the gain in pressure is due not only
by the tissues hardening but mainly by the stenosis(about sixty percent).
In the simulation with only the stenosis the gain in pressure just before the
plaque can maybe be explained from the smaller passage area that cause
more friction losses: then an higher pressure before the stenosis is "required"
to guarantee the imposed �ux trough the vessel. In the simulation with
tissue hardening the vessel's less elasticity contributes to increase pressure at
systole.

Conversely the result for �ux are quite di�erent from expected. Indeed in
�gure 4.9 we can see a small gain in the value of the �ux in the carotid before
surgery. A decrease in blood �ow is usual in atherosclerotic vessels [7]. This
not realistic results is maybe due to the fact that we have considered the same
inlet data (obtained after the treatment) for all simulations. We remember
that our aim was not simulate reality but try to understand how, starting
from the same conditions, the change in geometry and vessel's mechanical
characteristic can in�uence blood �ow.

4.3.2 Velocity

Now we will consider the results obtained for the velocity �eld, examining
the data obtained at the systole for all three simulations.

Figure 4.10: The streamlines and the velocity vectors at the systole of the carotid after
the surgery
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Figure 4.11: The streamlines and the velocity vectors at the systole of the carotid before
the surgery not considering tissue hardening

Figure 4.12: The streamlines and the velocity vectors at the systole of the carotid before
the surgery considering tissue hardening

It is very clear from the images that before the surgical operation the
velocity at the stenosis is higher than after the operation. The e�ect is
greater in the simulation with the tissues hardening, as can be expected
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because we have higher values for �ux (see �gure 4.9) but less lumen area:
indeed tissue hardening causes less wall displacement (as it will be showed
in next section) and so the lumen vessel becomes less large at systole.

4.3.3 Wall displacement

In the following images we will show the result obtained for the displacement
of the vessel wall at the �uid-solid interface.

Figure 4.13: The displacement of the wall at the systole of the carotid after the surgery

Figure 4.14: The displacement of the wall at the systole of the carotid before the surgery
(not considering tissue hardening)
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Figure 4.15: The displacement of the wall at the systole of the carotid before the surgery
(considering tissue hardening)

As expected the value of wall displacement is lower in the case where
the plaque hard tissue has been implemented respect to other two cases. It
can be noticed that in the simulation after the surgery and in the simulation
before surgery but without tissue hardening the values of displacement are
comparable. This mean that, as can be expected, low wall displacement is
caused by the tissue sti�ening and not by stenosis.

4.3.4 Wall shear stress (WSS)

In next images we can see the results obtained for shear stress at the �uid-
structure interface.

Figure 4.16: The displacement of the wall at the systole of the carotid after the surgery
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Figure 4.17: The displacement of the wall at the systole of the carotid before the surgery
(not considering tissue hardening)

Figure 4.18: The displacement of the wall at the systole of the carotid before the surgery
(considering tissue hardening)

Wall shear stress in�uence the orientation and deformation (or even dam-
aging) of the endothelial cells. Wall permeability, and the possibility to
change the chemical composition and mechanical characteristic of the vessel
wall therefore depends on wall shear stress [3]. Furthermore has been sug-
gested that an high value of WSS is the cause of the plaque rupture, that is
the main danger in this situations, because the particles of the plaque relased
in blood �ow can obstruct smaller vessels and then cause ischemic attacks
[5]. The value of wall shear stress (WSS) is greater near the stenosis in the
simulations of the carotid before the surgery but above all in the case where
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the tissue sti�ening have been considered. Indeed WSS in a Newtonian �uid
is is directly proportional to velocity gradient, that is higher in the carotids
before the operation, because the value of �uid velocity is itself greater (see
section 4.3.2). Velocity gradient is higher in the case where tissue sti�en-
ing have been considered, not only because the value of maxium velocity is
greater but also because the velocity of the structure is lower, and this made
that WSS reached its maximum values in this case.

4.4 Final comment on the results obtained

In the �rst part of our work we discussed about the setting of the boundary
conditions necessary to de�ne the mathematical model that we used to simu-
late blood �ow in human carotids. We obtained an important result: we can
set the parameters that de�ne the boundary conditions without increasing
too much the accuracy of the mesh. Indeed we showed that using the same
paremeter with a more accurate discretization we obtained similar values for
the quantities that we have to control for setting the parameters.

Then in the second part we tried to understand how, starting from the
same inlet conditions, some important parameters change in a carotid sub-
jected to a surgical treatment of atherosclerotic plaque removal. Most of the
results obtained with the simulations agree with the the clincal data and
results obtained in other works as [16].

An important result is that in the carotid before the surgery the values
of blood pressure, in particular at systole, are higher than in carotid after
the treatment. This agree with medical experience, but according to the
simulations this gain in pressure is caused not only by the more sti�ness of
the tissues in presence of the plaque but mainly by the reduction in lumen
area (about sixty percent of the gain at systole is due by stenosis). This
results can maybe be explained from the smaller passage area that cause
more friction losses: then is "required" an higher pressure before the stenosis
to guarantee the imposed �ux trough the vessel. In the simulation with
tissue hardening the vessel's less elasticity contributes to increase pressure at
systole.

Another important and expected result is the lower deformation of the
carotid's wall together with higher values of wall shear stress. In some works,
as in [5], has been suggested that this fact is the cause of the plaque rupture,
that is the main danger in this situations, because the particles of the plaque
relased in blood �ow can obstruct smaller vessels and then cause ischemic
attacks. More over the possibility to change the chemical composition and
mechanical characteristic of the vessel wall depends on wall shear stress [3].
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Other results, as the increase of blood �ow do not agree with medical
experience, and this fact is caused probably by the fact that we have imposed
the same velocity conditions, that obtained after the surgical treatment, also
on the model of the diseased carotid, a not realistic assumption, as the fact
that we simulated only a small part of the complex cardiovascular system.

46



Bibliography

[1] Quarteroni A. and Valli A. Domain decomposition methods for partial
di�erential equations. The Clarendon Press, 1999.

[2] J. Seong C. Sadasivan M. J. Gounis L. Miskolczi A. K. Wakhloo, B.
B. Lieber and J. S. Sandhu. Hemodynamics of carotid artery atheroscle-
rotic disease. Technical report, Vasc Interv Radiol.

[3] Alessandro Veneziani Al�o Quarteroni, Luca Formaggia. The circulatory
system: from case studies to mathematical modeling. Technical report,
Politecnico di Milano.

[4] Fausto Saleri Al�o Quarteroni. Calcolo scienti�co. Springer, Milano,
2008.

[5] David Calvet Moustapha Zidi Enrico-Agabiti Rosei Stephane Laurent
Anna Paini, Pierre Boutouyrie. Multiaxial mechanical characteristics
of carotid plaque: analysis by multiarray echotracking system. Stroke,

journal of the american heart association, 2007.

[6] Steinman D. Image-based cfd modeling in realistic arterial geometries.
Annals of Biomedical Engineering, 2002.

[7] Sherif Sultan Niamh Hynes Caitri �Ona Lally Daniel J. Kelly
Eoghan Maher, Arthur Creane. Inelasticity of human carotid atheroscle-
rotic plaque. Annals of Biomedical Engineering, September 2011.

[8] C.Vergara F.Nobile. Partitioned algorithms for �uid-structure interac-
tion problems in haemodynamics.

[9] C.Vergara F.Nobile, M.Pozzoli. Time accurate partitioned algorithms
for the solution of �uid-structure interaction problems in haemodynam-
ics. part 2: The �nite elasticity case. In preparation.

47



[10] C.Vergara F.Nobile, M.Pozzoli. Time accurate partitioned algorithms
for the solution of �uid-structure interaction problems in haemodynam-
ics. International journal for numerical methods in engigneering , 2012.

[11] Nobile F Quarteroni A Formaggia L, Gerbeau JF. Numerical treatment
of defective boundary conditions for the navier-stokes equation. SIAM

Journal on Numerical Analysis, 2002.

[12] Al�o Quarteroni Alessandro Veneziani Luca Formaggia, Fabio Nobile.
Multiscale modelling of the circulatory system: a preliminary analysis.
Computing and Visualization in Science, June 1999.

[13] Alessandro Veneziani Massimiliano Tuveri, Al�o Quarteroni. Computa-
tional vascular �uyd dynamics: problems, models and methods. Com-

puting and Visualization in Science, August 1999.

[14] F.Nobile P.Causin, J.F. Gerbeau. Added-mass e�ect in design of par-
titioned algorithms for �uid-structure problems. Computer Methods in

applied mechanics and engigneering, December 2004.

[15] Matteo Pozzoli. Simulazioni numeriche per l'interazione �uido-struttura
in emodinamica. Degree thesis, Politecnico di Milano, Mathematical
Engineering.

[16] Matteo Pozzoli. E�cient partitioned algorithms for the solution of �uid-
structure interaction problems in haemodynamics. Ph.d thesis, Politec-
nico di Milano, Mathematical Engineering, February 2012.

[17] Francesco Premoli. Emodinamica e aterosclerosi: simulazioni numeriche
per problemi di interazione �uido-struttura. Degree thesis, Politecnico
di Milano, Aeronautical Engineering, 2009.

[18] Al�o Quarteroni. What mathematics can do for the simulation of blood
circulation. Technical report, Politecnico di Milano.

[19] Al�o Quarteroni. Modellistica numerica per problemi di�erenziali.
Springer, Milano, 2008.

[20] Vergara C. Veneziani A. Flow rate defective boundary conditions in
haemodinamics simulations. Journal for Numerical Methods in Fluids,
2005.

[21] Nichols W. and O'Rourke M. Mc Donald's Blood Flow in Arteries.
Edward Arnold Ltd, London, 1990.

48


