
Università degli Studi di Napoli
“Federico II”
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Abstract

This thesis deals with a computational haemodynamic problem. The purpose is to simulate
the prestressed state in human arteries and verify its effectiveness in haemodynamic fluid-
structure interaction simulations.

In the first part of this work, we describe the vessel wall mechanics in regime of finite
deformations with non linear hyperelastic structural models commonly used to describe bio-
logical tissue. Subsequently, we implement a parallel algorithm that consists in a simple
iterative procedure based on a fixed point method. This algorithm aims at the calculation of
deflated vascular geometries starting from three-dimensional vascular geometries reconstruc-
ted from radiological images. The idea is to use these deflated geometries as initial reference
configurations for fluid-structure interaction simulations, in order to simulate the prestressed
state of arteries. Moreover, we have tested the algorithm from a quantitative point of view,
using consistency test cases on simple geometries.

In the second part of this thesis, we describe the incompressible Navier-Stokes equations
in moving domains using the Arbitrary Lagrangian-Eulerian (ALE) formulation, and the
fluid-structure coupled problem. Then, we use our algorithm in a parallel partitionated fluid-
structure interaction solver and we perform physiological simulations on a patient-specific
carotid artery with and without the use of deflated geometries, evaluating the fluid velocity,
the fluid pressure, the structure displacement and the wall-shear stress fields in both cases,
highlighting the differences.

All of the present work is developed within the open source object-oriented library called
LifeV, that works on parallel architectures. In particular, LifeV is a finite element library
that solves several physical problems, such as fluid dynamics, reaction-diffusion-transport
and mechanical problems in a multiphysics contest.

Keywords: Prestress, fluid-structure interaction, computational haemodynamics, parallel
computing, hyperelasicity, nonlinear structure, large deformations.
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Sommario

Questa tesi tratta un problema di emodinamica computazionale. Lo scopo è quello di sim-
ulare lo stato di prestress presente nelle arterie e verificarne l’efficacia nelle simulazioni di
interazione fluido-struttura in ambito emodinamico.

Nella prima parte di questo lavoro viene descritta la meccanica delle pareti arteriose in
regime di deformazioni finite, usando modelli strutturali non lineari ed iperelastici comune-
mente impiegati per descrivere tessuti biologici. In seguito, abbiamo implementato un algor-
itmo parallelo che consiste in una semplice procedura iterativa basata su un metodo di punto
fisso. Questo algoritmo calcola geometrie vascolari sgonfie partendo da geometrie tridimen-
sionali ricostruite da immagini radiologiche. L’idea è quella di usare queste geometrie sgonfie
come configurazione iniziale di riferimento nelle simulazioni di interazione fluido-struttra, al
fine di simulare lo stato prestressato delle arterie. Abbiamo inoltre testato l’algoritmo da un
punto di vista quantitativo usando casi test su geometrie semplici.

Nella seconda parte di questa tesi descriviamo le equazioni di Navier-Stokes nel caso
incompressibile per domini in movimento usando la formulazione Arbitrary Lagrangian-
Eulerian (ALE), e descriviamo il problema accoppiato fluido-struttura. Successivamente
utilizziamo il nostro algoritmo in un solutore fluido-struttura parallelo e partizionato ed ef-
fettuiamo delle simulazioni fisiologiche su una arteria carotidea di un paziente specifico, con
e senza geometrie sgonfie, valutando i campi di velocità e pressione del fluido, il campo di
spostamenti della struttura e quello dello stress di taglio alla parete ed evidenziandone le
differenze.

Il presente lavoro è interamente sviluppato all’interno della libreria open-source LifeV,
che lavora su architetture in parallelo. In particolare, LifeV è una libreria agli elementi finiti
che risolve diversi problemi fisici, come problemi di dinamica dei fluidi, problemi di reazione-
diffusione-trasporto e problemi meccanici in contesto multifisico.

Parole chiave: Prestress, interazione fluido-struttura, emodinamica computazionale, cal-
colo parallelo, iperelasticità, struttura non lineare, grandi deformazioni.
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Chapter 1

Introduction

The first part of this chapter presents the motivations of this work with a general overview
on the more common cardiovascular diseases. The second part explains the role of numerical
simulation in the study of cardiovascular diseases. The third part presents the contribution
of this work both in mechanical and haemodynamic fields. In the last section there is the
outline of this thesis.

1.1 Motivations

The use of mathematical models, originally radicated mainly in sectors with a strong technical
content (such as, e.g., automotive and aerospace engineering), is now widespread also in many
fields of life sciences. Bioinformatics, mathematical analysis and scientific computing support
investigations in different fields of biology (like genetics or physiology) and medicine.

The main impulse to this field of study comes from the increasing demand in the med-
ical community for scientifically rigorous and quantitative investigations of cardiovascular
diseases (CVD). In 2010, 18.1 million people died of CVD. Today, 1.3 billion people smoke
worldwide, 600 million have hypertension, and 220 million live with diabetes which puts
more than 2 billion individuals at risk of heart disease, stroke, or a related health problems.
In particular, stroke is the second leading cause of death globally, and the leading cause of
acquired disability, killing 5.7 million people every year [1] (see tables 1.1, 1.2).

Major CVD includes diseases listed in the bullet points below:

• High blood pressure (HBP) or hypertension, defined as systolic pressure >=140 mmHg
and/or diastolic pressure >=90 mmHg, use of antihypertensive medication, or being
told at least twice by a physician or other health professional that one has HBP. One in
three US adults has HBP and projections show that by 2030, an additional 27 million
people could have hypertension, a 9.9% increase in prevalence from 2010.

• Coronary heart disease (CHD), acute coronary syndrome and angina pectoris. Over the
next 20 years, medical costs of CHD (real 2008$) are projected to increase by 200%: of

1



Chapter 1. Introduction

CVD indirect costs, CHD is projected to account for 40% and has the largest indirect
costs.

• Stroke (cerebrovascular disease). It causes one of every eighteen deaths in USA. Pro-
jections show that by 2030, an additional 4 million people will have had a stroke, a
24.9% increase in prevalence from 2010.

• Cardiomyopathy and heart failure.

• Disorders of heart rhythm.

• Other cardiovascular diseases: valvular heart disease, aortic, mitral, pulmunary and
tricuspid valve disorders, etc.

An estimated 82.6 million American adults (more than one third) have one or more types
of CVD. Of these, 40.4 million are estimated to be older than 60 years of age [2]. The total
direct and indirect cost of CVD in the United States for 2008 is estimated to be $297.7 billion
(see fig. 1.1). This figure includes health expenditures (direct costs, which include the cost
of physicians and other professionals, hospital services, prescribed medications, home health
care, and other medical durables) and lost productivity resulting from mortality (indirect
costs). By comparison, in 2008, the estimated cost of all cancer and benign neoplasms was
$228 billion. CVD costs more than any other diagnostic group. By 2030, 40.5% of the
US population is projected to have some form of CVD and total medical costs of CVD are
projected to triple, from $273 billion to $818 billion [3].

In Europe, each year, CVD causes over 4.3 million deaths, nearly half of all deaths in
Europe. It is the main cause of death in women in all countries of Europe and is the main
cause of death in men in all countries except France, the Netherlands and Spain. The financial
burden for EU health care systems related to this group of diseases has been estimated to be
just under e192 billion in 2006, almost e110 billion of which were direct costs and e82 billion
were indirect costs. CVD are very strongly associated with social conditions and differences
in CVD rates are the biggest single causes of health inequalities both between and within
the Member States [4].

There is certainly a need to a change of behaviours and lifestyle to prevent these dis-
eases induced by smoking, an incorrect diet, physical inactivity, alcohol consumption and
psychosocial stress. At the same time, however, it is necessary to provide effective investig-
ative tools to treat existing diseases and better understand the phenomena behind this type
of problems and provide a more effective prevention. In the past decade, the application of
mathematical models, seconded by the use of efficient and accurate numerical algorithms, has
made impressive progress in the interpretation of the circulatory system functionality, in both
physiological and pathological situations, as well as in the perspective of providing patient
specific design indications to surgical planning. Continued advances in molecular and cell
biology, biomechanics, medical imaging, computational methods, and computational power
promise to revolutionize our understanding and thus treatment of these devastating diseases.
There is a pressing need, therefore, to synthesize these many advances into a consistent clin-
ically useful tool. Computational methods could enable cardiovascular device manufacturers

2



1.1. Motivations

Figure 1.1: Direct and indirect costs (in billions of dollars) of major cardiovas-
cular diseases (CVD) (United States: 2008). Source: National Heart, Lung, and
Blood Institute.

to predict the performance of their devices in virtual patients prior to deployment in human
trials. These virtual clinical trials prior to animal and human studies could result in safer
designs, reduced development costs, and shorter time-to-market.

3
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CVD CHD Stroke Total
deaths deaths deaths deaths

Men ages 35-74 y
Russian Federation (2006) 1299.2 706 351.4 2683.4
Bulgaria (2008) 803.7 219.4 218.2 1554.3
Lithuania (2009) 734.7 444.6 138.3 1842.3
Romania (2009) 677.9 276.4 200.2 1572.4
Slovakia (2005) 634.2 320.1 91.8 1528.3
Hungary (2009) 605.6 319.1 121.1 1652.3
Poland (2008) 495.2 180.0 100.8 1412.7
Croatia (2009) 419.3 202.2 113.6 1184.7
Czech Republic (2009) 386.6 198.6 64.4 1080.8
Kuwait (2009) 319.6 187.0 62.1 563.9
Finland (2009) 284.4 170.0 43.8 833.2
United States (2008) 256.0 149.2 30.0 862.7
Greece (2009) 251.6 136.7 50.8 721.6
Germany (2006) 242.1 125.3 34.5 788.5
Ireland (2009) 210.0 140.6 29.2 701.3
Belgium (2005) 209.6 99.5 35.9 821.7
Denmark (2006) 206.6 84.8 45.6 865.6
New Zealand (2007) 204.2 135.6 29.1 635.7
United Kingdom (2009) 202.0 125.8 29.9 687.6
Canada (2004) 198.3 130.8 24.2 705.3
Austria (2009) 189.3 110.2 26.3 736.3
Sweden (2008) 187.8 109.4 31.0 591.8
Portugal (2009) 168.7 61.3 62.1 825.3
Spain (2008) 168.2 77.6 33.7 714.0
Italy (2007) 160.6 75.6 29.9 625.8
Netherlands (2009) 157.9 64.6 24.6 649.4
Israel (2007) 156.3 86.3 32.5 655.9
Norway (2009) 154.4 84.6 29.0 607.0
Switzerland (2007) 150.4 78.2 16.6 587.5
Japan (2009) 145.2 46.5 52.2 605.0
France (2007) 145.0 57.1 26.5 774.6
Australia (2006) 141.3 88.9 22.0 553.4
Korea, South (2009) 138.4 41.0 65.9 783.6

Table 1.1: International men death rates (per 100 000 population) for total
CVD, CHD, stroke, and total deaths in selected countries (revised May 2011).
CVD indicates cardiovascular disease; CHD, coronary heart disease. Sources: The
World Health Organization, National Center for Health Statistics, and National
Heart, Lung, and Blood Institute.
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CVD CHD Stroke Total
deaths deaths deaths deaths

Women ages 35–74 y
Russian Federation (2006) 521.4 237.1 189.2 1001.8
Bulgaria (2008) 368.6 70.9 120.6 699.3
Romania (2009) 325.5 109.5 116.2 706.0
Slovakia (2005) 269.5 129.5 41.9 643.7
Lithuania (2009) 253.9 127.5 73.8 648.6
Kuwait (2009) 246.1 94.8 56.1 568.1
Hungary (2009) 239.2 113.7 56.0 719.4
Croatia (2009) 190.8 71.9 68.7 520.1
Poland (2008) 181.5 51.6 50.1 570.0
Czech Republic (2009) 164.3 69.9 34.8 506.6
United States (2008) 129.2 59.5 23.5 544.7
Denmark (2006) 100.0 32.4 32.1 557.8
Germany (2006) 97.8 38.2 20.1 402.4
Greece (2009) 97.1 33.3 29.3 319.0
Belgium (2005) 94.4 30.8 24.8 436.3
New Zealand (2007) 89.8 43.9 21.7 418.2
United Kingdom (2009) 88.1 38.5 22.5 438.5
Ireland (2009) 86.8 40.9 21.9 419.8
Finland (2009) 83.4 36.1 23.0 377.8
Canada (2004) 83.1 42.8 17.3 432.7
Portugal (2009) 76.5 20.0 33.5 377.6
Austria (2009) 75.5 33.7 16.4 368.2
Sweden (2008) 74.6 35.5 18.5 374.1
Netherlands (2009) 74.0 20.6 20.1 416.8
Italy (2007) 67.3 22.2 18.2 326.0
Israel (2007) 65.4 22.2 17.3 388.7
Korea, South (2009) 63.5 41.0 33.2 312.3
Spain (2008) 62.4 18.7 17.8 304.4
Norway (2009) 60.5 26.3 15.2 377.0
Australia (2006) 60.4 26.8 16.3 327.5
Japan (2009) 54.4 12.8 22.7 266.9
Switzerland (2007) 54.1 19.4 12.4 327.6
France (2007) 51.3 12.1 13.9 346.0

Table 1.2: International women death rates (per 100 000 population) for total
CVD, CHD, stroke, and total deaths in selected countries (revised May 2011).
CVD indicates cardiovascular disease; CHD, coronary heart disease. Sources: The
World Health Organization, National Center for Health Statistics, and National
Heart, Lung, and Blood Institute.
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1.2 The role of numerical simulations

The vascular system is highly complex and able to regulate itself: an excessive decrease in
blood pressure will cause the smaller arteries (the arterioles) to contract and the heart rate
to increase, whereas an excessive blood pressure is counter-reacted by a relaxation of the
arterioles (which causes a reduction of the periphery resistance to the flow) and a decrease of
the heart beat. Yet, it may happen that some pathological conditions develop. For example,
the arterial wall may become more rigid, due to illness or excessive smoking habits, fat may
accumulate in the arterial walls causing a reduction of the vessel section (a stenosis) and
eventually an aneurysm or an atherosclerotic plaque.

The consequence of these pathologies on the blood field as well as the possible outcome
of a surgical intervention to cure them may be studied by numerical simulations, that are
less invasive than in-vivo investigation, and far more accurate and flexible than in-vitro ex-
periments (in addition they deal with ethical and practical limitations). Numerical models
require patient’s data (the initial and boundary conditions for the PDE systems, as well as
geometrical data to characterize the shape of the computational domain) that can be gen-
erated by radiological acquisition through modern non-invasive data collection technologies,
e.g., computerized tomography, magnetic resonance, doppler anemometry, etc. (see fig.1.2).

The progress in computational fluid dynamics (CFD), as well as the increase in computer
power, has added the numerical experiments to the tools at disposal to medical researchers,
biologists and bioengineers. For example, quantities like shear stresses on the endothelium
surface, which are quite hard, if not impossible, to measure in vitro, can now be calculated
from simulations carried out on real geometries obtained with three-dimensional reconstruc-
tion algorithms.

Besides their employment in medical research, numerical models of vascular flows can
provide a virtual experimental platform to be used as training system. For instance, a tech-
nique now currently used to cure a stenosis is angioplasty, which consists of inflating a balloon
positioned in the stenotic region by the help of a catheter. The balloon should squash the
stenosis and approximately restore the original lumen area. The success of the procedure
depends, among other factors, on the sensitivity of the surgeon and his ability of placing the
catheter in the right position. A training system which couples virtual reality techniques
with the simulation of the flow field around the catheter, the balloon and the vessel walls,
employing geometries extracted from real patients, could well serve as training bed for new
vascular surgeons. A similar perspective could provide specific design indications for the
realization of surgical operations. For instance, numerical simulations could represent a tool
for the design of new prototypes, or for devising prosthetic devices by the help of shape op-
timization theory. These numerical investigations can help the surgeon in understanding how
the different surgical solutions may affect blood circulation and guide the choice of the most
appropriate procedure for a specific patient. In such “virtual surgery” environments, the out-
come of alternative treatment plans for the individual patient can be foreseen by simulations,
yielding a new paradigm of the clinical practice which is referred to as “predictive medicine”
(see [5]).

6



1.2. The role of numerical simulations

The European Union is improving the research in numerical simulation with the Virtual
Physiological Human Network of Excellence (VPH NoE) program [6]. The VPH NoE is a
project which aims to help support and progress European research in biomedical modelling
and simulation of the human body. This will improve our ability to predict, diagnose and
treat disease, and have a dramatic impact on the future of healthcare, the pharmaceutical
and medical device industries. This program is designed to foster, harmonise and integrate
pan-European research in the field of

1. Patient-specific computer models for personalised and predictive healthcare,

2. ICT-based tools for modelling and simulation of human physiology and disease-related
processes.

Another European research program is the Mathematical Modelling and Simulation of the
cardiovascular system (MathCard) project, a five years long project started in 2009 and due
to finish by the end of 2013 [7] whose principal investigator is professor Alfio Quarteroni. The
goal of this program is to describe and simulate the anatomic structure and the physiolo-
gical response of the human cardiovascular system in healthy or diseased states, developing
different tasks:

• mathematical models for the integrated cardiovascular system;

• mathematical models of the interaction between circulation, tissue perfusion, biochem-
ical and thermal regulation;

• modeling drug delivery in prosthetic implants;

• modeling electrical activity, fluid dynamics and wall mechanics of the heart;

• efficient methods for control and optimisation;

• risk evaluation;

• software development;

• further relevant clinical applications.
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Chapter 1. Introduction

(a) MRI machine. (b) EcocolorDoppler of an abdominal aorta.

(c) Brain vessels in a MRI caption. (d) CT angiography.

Figure 1.2: Examples of modern non-invasive data collection techologies.
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Computational Haemodynamics. One of the most interesting and promising fields
in numerical simulation is computational haemodynamics. It helps us to improve in the un-
derstanding of the on-rise and the development of individual physiopathologies. For example,
geometrical reconstructions of an individual carotid morphology starting from angiographies,
CT scans or MR images can be extensively used for evaluating the impact of the vessel shape
on the wall shear stress and consequently on the possible development of pathologies. The
separation of the blood flow in the vessel and the generation of a secondary motion are today
recognized as potential factors for the development of atherosclerotic plaques. They may
be induced by a particular vascular morpohology, like a bifurcation (see fig.1.3). A detailed
understanding of the local haemodynamic patterns and of their effects on the vessel wall is
today a possibility thanks to accurate computer simulations (see fig.1.4).

Figure 1.3: Carotid bifurcation in healthy and diseased state.

In vascular surgery, arterial bypass grafting is a common practice to treat coronary artery
and peripheral vascular diseases. Nonetheless, over 50% of coronary artery bypass grafts fail
within 10 years and more than 25% of infra-inguinal grafts within 5 years (see [9, 10, 11]).
The principal cause is neo-intimal hyperplasia that may degenerate in atherosclerosis. A
better understanding of local haemodynamics, like the detection of regions of low wall shear
stress and of high residence time for blood particles, is of utmost importance to assess its
correlation with atherogenesis [12].

A final example is the onrise and growth of cerebral aneurysms, a major pathology with
many aspects still to be clarified. Here, complex interactions involving systemic factors, like
hypertension or high cholesterol levels, and local blood flow features associated to particular
vascular morphologies can induce the onrise of the pathology [13, 14, 15].
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Figure 1.4: Fluid velocity [cm/s] on a patient-specific carotid bifurcation before
(left) and after (right) carotid thromboendarterectomy. Taken from [8].

The computational haemodynamics can improve prediction and design too. In some en-
gineering fields numerical simulations represent a consolidated tool for supporting design and
the set up of a new prototype, with the aim of reducing the more expensive experimental
assessment. Today, it is a common practice in cardiology the use of stents, to open a stenosis
in a vessel. A stent is a little metallic tube permanently inserted in the artery that keeps
it opened to let blood flowing normally. In particular, drug eluting stents contain medica-
tion substances able to reduce possible inflammation reactions and haemodynamic numerical
simulations allow to design a film coating optimized for drug release [16, 17].

Another task of computational haemodynamics is identification and optimization. Sci-
entific computing is nowadays used to solve not only direct, but also inverse problems, i.e. to
help devising a solution which fulfills some prescribed optimality criteria. For example shape
optimization tecniques are applied to coronary artery bypass graft surgery, reducing surgical
intervent failure probability [18]. The task could be therefore not only to simulate the fluid
dynamics in a given vascular district or, more in general, in a compartment (i.e. a set of
organs and tissues). Rather, the desired dynamics inside the compartment are specified (or
given by measures in identification problems), and the computations have the role to identify
the “parameters” of the problem ensuring that these features will be fulfilled at best. The
major difficulty in solving optimization problems in general (and for life sciences in particu-
lar) is represented by the severe computational costs. Optimization solvers are usually based
on iterative procedures and this could be prohibitely expensive if each iteration requires the
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solution of a system of non-linear time-dependent partial differential equations. For this
reason, specific techniques are under development, aiming at reducing the computational
costs, as the reduced basis method [19].

For further informations and details about computational haemodynamics applications
see [20, 21].

1.3 The present work

The work achieved in this thesis has been developed at MOX - Modeling and Scientific
Computing laboratory (Dipartimento di Matematica ”F. Brioschi”, Politecnico di Milano).

In the first part of this thesis, we have implemented a parallel structural algorithm into
the open-source finite-element library LifeV [22] (developed by Politecnico di Milano (MOX),
Ecole Polytéchnique Fédérale de Lausanne (CMCS, Switzerland), INRIA (REO/ESTIME,
France) and Emory University (Sc. Comp, USA)). The goal is to improve the non-linear
hyperelastic vessel wall model in fluid-structure interaction (FSI) simulations, including the
prestressed state to vascular geometries reconstructed from radiological images [23, 24, 25, 26].
Our algorithm consists in a simple iterative procedure based on a fixed point method, and
it aims at the calculation of deflated vascular geometries to simulate the prestressed state of
arteries.

We have tested the algorithm from a quantitative point of view, using simple consistency
test cases on a cube and a hollow cylinder. During our simulations we have considered
two material models: St. Venant-Kirchhoff and Exponential. The former is a hyperelastic
compressible material, while the latter is a nearly-incompressible hyperelastic material [27,
28, 29, 30]. These materials have properties similar to biological tissues as well known in
literature [31, 32, 33, 34].

In the second part of this thesis, we described the Navier-Stokes equations in moving do-
mains using the Arbitrary Lagrangian-Eulerian formulation, and the fluid-structure coupled
problem with the partitioned procedure used to solve it. We used the algorithm in a parallel
partitionated FSI solver, performing FSI simulations on a patient-specific carotid artery with
and without the use of deflated geometries, evaluating the fluid velocity, the fluid pressure,
the structure displacement and the wall-shear stress fields in both cases, highlighting the
differences.

Summarizing, the present work has produced the following results:

• Development of a parallel algorithm to simulate prestressed state of arteries;

• Integration of the algorithm in a parallel FSI solver;

• Haemodynamics results on complex prestressed geometries.

11



Chapter 1. Introduction

1.4 Outline

In Chapter 2, we introduce the artery wall mechanics in the framework of three-dimensional
finite elasticity. Moreover, we introduce the finite element formulation and the time discret-
ization.

In Chapter 3, we explain the importance in recovering the correct initial geometry for
fluid-structure interaction simulations. We introduce the algorithm implemented in this work
and some numerical results on a cube and an hollow cylinder.

In Chapter 4, we introduce the incompressible Navier-Stokes equations in a moving do-
main using the Arbitrary Lagrangian-Eulerian formulation, their finite element formulation
and time discretization.

Chapter 5 deals with the fluid-structure interaction problem and the partitioned al-
gorithms used for the numerical solution.

In Chapter 6, we present an haemodynamic problem on a real carotid geometry showing
the effectiveness of deflated geometries as initial configurations in FSI simulations. We com-
pare FSI results on inflated and deflated patient-specific carotid, highlighting differences in
the displacement, velocity, pressure field, and in the wall shear stress (WSS) haemodynamic
factor.
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Chapter 2

Artery wall mechanics

In the first part of this chapter a description of the artery wall is presented, with an insight on
artery wall models and open problems. In the second part we provide some basic information
on three-dimensional finite elasticity and finite element formulation needed in the following.

2.1 The artery wall

The arterial wall is a complex composite consisting of three primary types of constituents:
structural proteins, resident cells, and a ground substance matrix. The primary structural
proteins are elastin and fibrillar collagen. Elastin is the most biologically stable protein in
the body (with a half life on the order of the lifespan of the organism) and it is the most
elastic; it is capable of recoverable extensions of over 100%. Among the many members of the
collagen family, particularly types I, III–V, and VIII in arteries, the fibrillar types I and III
dominate overall wall stiffness. Finally, smooth muscle cells are capable of generating large,
sustained contractile forces, which regulate the caliber of the artery and thus local blood
flow.

The arterial wall is divided into three different layers: tunica intima, tunica media and
tunica adventitia as shown in figure 2.1. The first layer is the innermost, it consists mainly
of a single layer of endothelial cells, and does not contribute to the passive wall-mechanical
response in healthy young arteries (because of its thinness) [33]. In a disease situation the
mechanical properties of the wall may differ significantly from those of healthy arteries and,
in some cases, the intima layer may become relevant [15]. We underline that pathological
changes of the intimal components may be associated with atherosclerosis, the most common
disease of the arterial wall. It consists in deposition of material, such as calcium, cellular
waste products, and fibrin, that in an healthy situation are carried away by the blood flow.
The resulting build-up is called atherosclerotic plaque, causing significant alterations in the
mechanical behaviour of the arterial wall.

The second layer is the most important for arterial structural behaviour because it con-
tains the elastin and the collagen, the main actors of the artery wall-mechanics. It consists
of a complex three dimensional network of smooth muscle cells, elastin and collagen fibrils.
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Chapter 2. Artery wall mechanics

Figure 2.1: Artery wall layers.

Elastic layers, called fenestrated elastic laminae, separate the media into a varying number
of well-defined concentrically fiber reinforced layers [35].

Finally, the third arterial layer is the outermost and has a small contribution to structural
response [13]. It consists mainly of collagen, fibroblasts, and fibrocytes, which are the cells
that produce collagen and elastin. The adventitia is surrounded by connective tissue and its
thickness strongly depends on the artery type.

Arteries are subdivided into two types, elastic and muscular. The first one presents an
elastic behaviour while the second type is characterized by an important viscoelastic effect
[31]. An important characteristic of the passive mechanical behaviour of an artery is that the
stress-strain response during loading and unloading stages is highly non-linear. Indeed at low
strain levels the structural response is mainly governed by elastina (soft tissue), while at high
levels of strain the structural response is governed by fibers of collagen that stiffen the beha-
viour of the artery wall. Moreover, in large strain, the mechanical behaviour is anisotropic
because of the collagen fibers structure. Therefore, when a vessel undergoes relatively large
deformations it is expected that a reliable constitutive model for the vessel wall can be crucial
for the accurate computation of some mechanical factors which are considered important in
triggering the onset of a cardiovascular disease (e.g. aneurysms and atherosclerosis), or when
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investigating the effect of changes of the arterial tissue behaviour due to factors like aging or
hypertension.

2.1.1 State of the art

Constitutive laws In the last four decades, several models were proposed to describe
the vessel wall dynamics using different theoretical frameworks like finite elasticity or mixture
theory.

Modelling of soft tissues as fibre-reinforced elastic materials on the basis of the the invari-
ant formulation of constitutive laws for materials with one or two families of fibres is now well
established and widely used [34]. These formulations are based on the equations governing
planar biaxial deformations since biaxial tests are commonly used in arterial mechanics to
provide informations about material properties. However, biaxial tests alone are not suffi-
cient to fully characterize the material properties of the anisotropic soft tissues [36] and this
lack of data explains the need for some prior assumptions about the form of the constitutive
laws.

Many research groups are oriented towards a description of the arterial wall that takes
into account a multi-mechanism, coming from the elastin and collagen behaviour . The
multi-mechanism models are based on the physiological assumption that the elastin works
at low strain levels, then enters into a region of deformation in which collagen and elastin
work together, and finally enters into a region of deformation in which only collagen works
[37, 38, 39]. In figure 2.2a (taken from [40]) the internal pressure of an internal carotid
artery is plotted, as a function of the circumferential stretch for several fixed values of the
axial stretch. These curves show the characteristic stiffening response associated with the
stretching of the collagen fibres following the relatively soft response associated with the
deformation of the ground sustance. We can see that the response is stiffer for higher axial
pre-stretches. Figure 2.2b shows the pressure as a function of the axial stretch starting from
an initial axial pre-stretch at zero pressure. The arterial tube elongates during inflation for
low axial pre-stretches, but for larger ones the tube length decreases with pressure. The
transition between these behaviours corresponds to an axial pre-stretch of about 1.15, when
there is no change in length due to changes in pressure, a typical behaviour for human arteries
[41].

Elastin can be considered an isotropic material with Young’s modulus of about 1.1 MPa,
while collagen is composed of fibers that make it anisotropic and has a stiffness greater than
elastin with a Young’s modulus of about 1.1GPa. From a computational point of view, this
behavior can be effectively described using two different nonlinear constitutive laws, a Neo-
Hookean hyperelastic material working under a certain threshold of strain and an Exponential
hyperelastic material working above it.

Although arteries exhibit viscoelastic characteristics (creep, stress relaxation, and hyster-
esis), the assumption of hyperelasticity is sufficient in most physiologic and pathophysiologic
cases. All constitutive relations must capture the nearly incompressible, nonlinear, aniso-
tropic responses under finite deformations, however. Two general classes of relations have
found most use: purely phenomenological relations in terms of the Green strain [42, 43]
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Figure 2.2: Representative pressure–stretch response of an intact internal carotid
artery. (a) Pressure versus circumferential stretch for fixed values of the axial
stretch. (b) Pressure versus axial stretch for different starting values of the axial
stretch [40].

and structurally-motivated phenomenological relations [32, 44]. Although both types of re-
lations are sufficient for computing wall stress in general, structurally-motivated relations
using a rule-of-mixtures approach for the stress response are particularly useful in modeling
stress mediated vascular growth and remodeling (G&R) in normal arteries as well as disease
situations such as aneurysms and cerebral vasospasms.

Boundary conditions There are three primary surfaces of importance in arterial wall
mechanics: the inner surface, in contact with the blood or implantable device, the outer
surface, in contact with perivascular tissue, and the inlets/outlets generated by the truncation
of the domain in view of the numerical simulations. The need to know traction boundary
conditions on the inner surface of the artery (pressure and wall shear stress) reveals yet again
the importance of knowing the haemodynamics. Fortunately, considerable information on this
inner surface boundary condition can be gleaned from experiments, clinical measurements, or
formal fluid–solid interaction (FSI) models. In contrast, tractions acting on the ends of the
segment of interest (giving rise to the important axial pre-stretch) and the adventitial surface
are not amenable to measurement in animal studies or in the clinical setting. Fortunately,
it was discovered in the 1970s that arteries exhibit a remarkable property – the axial force
needed to maintain the vessel at its in vivo axial stretch does not change during normal cyclic
pressurizations. This constraint can be used in parameter estimations based on in vivo data
[45] and it enables the semi-inverse method of finite elasticity to be used effectively. The
outer boundary condition due to perivascular tissue is much more difficult to address, and
only recently has received increased attention [46]. As in outlet boundary conditions for the
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haemodynamics, lumped-parameter models will likely remain the best approach to address
perivascular effects.

Fluid–structure interactions Given the importance of haemodynamics on intramural
stresses and wall properties on the character of the blood flow, there has been recent progress
in solving coupled blood flow–vessel wall interaction problems. The traditional approach to
solve fluid–structure interaction problems in the arterial system is based on the Arbitrary
Lagrangian Eulerian (ALE) method to solve the fluid problem in a moving domain. The
coupled problem accounting for elastodynamics of the wall is solved using either a fully-
coupled or a staggered approach [47].

For most researchers the preferred method of handling the moving interfaces involved in
FSI modeling has been the arbitrary Lagrangian–Eulerian finite element formulation [47].
An alternative to the ALE approach is the Coupled Momentum Method(CMM) [48]. In
this approach, wall motion is assumed to be small so that the fluid mesh is not updated, a
membrane model for the vessel wall is employed, and node-on-node compatibility between the
lateral surface of the fluid mesh and the vessel wall is enforced. These simplifications enable
the elastodynamic equations for the wall to be embedded within the fluid dynamics equations,
hence the only additional degrees of freedom are the (nonzero) velocities of the nodes on the
lateral surface. The CMM is highly efficient for large scale fluid–structure interaction and
wave propagation problems wherein underlying assumptions of small deformation and thin
walls are valid. Indeed, the thin wall assumption is generally applicable (if the bending
stiffness is accounted for appropriately) if the focus is on the haemodynamics because the
fluid only needs to “know” the structural stiffness of the wall that constrains its motion, not
detailed stress distributions throughout the wall.

For [49], the preferred method of handling the moving interfaces involved in FSI modeling
has been the deforming-spatial-domain/stabilized space–time (DSD/SST) formulation [50,
51, 52, 53], which was introduced in 1991 as a general-purpose interface-tracking (i.e. moving
mesh) technique for computation of flow problems with moving boundaries or interfaces.
The formulation is based on the streamline-upwind/Petrov–Galerkin (SUPG) [54, 55] and
pressure-stabilizing/Petrov–Galerkin (PSPG) [50, 56] methods.

Another alternative is the immersed boundary method introduced in [57]. In this method,
the Navier–Stokes equations are generally solved on a Cartesian grid, which removes the ef-
fort needed to generate a body-fitted grid and enables the use of efficient numerical methods
that can be parallelized in a relatively easy manner. The influence of objects on the flow is
simulated by the addition of a force density (which represents the force of the surface of the
object on the fluid) to the Navier–Stokes equations. This force density, if chosen properly,
should result in a solution to the Navier–Stokes equation which satisfies the boundary con-
ditions on the surface of the object. This is in contrast to other methods such as body-fitted
curvilinear or unstructured grids, which require the grid to be built around or inside the
objects being modeled.
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Biological growth and remodeling Arteries retain a remarkable ability to adapt
to changing haemodynamic conditions throughout life. The best known examples are that
arteries increase (or decrease) in caliber in response to sustained increases (or decreases)
in blood flow induced wall shear stresses [58] and they increase (or decrease) in thickness
in response to sustained increases (or decreases) in blood pressure [59]. Indeed, perhaps
the most important application of arterial wall mechanics is in understanding better how
arteries adapt or maladapt under normal conditions, in disease, in injury, and in response to
treatments that may include the use of implanted medical devices.

To date, two primary approaches have been proposed to address arterial growth and
remodelling (G&R): the concept of kinematic growth (e.g. [60, 61] and the concept of a
constrained mixture [62, 63]. The former can predict many cases of arterial adaptations by
modeling the consequences of G&R but not the causes of such development. In contrast,
the constrained mixture approach enables one to model the different rates of turnover of
individual types of cells and matrix based on individual mass density production and re-
moval (constitutive) functions. Such an approach promises to enable information on the
mechanobiology to be incorporated directly.

A comprehensive model of vascular mechanobiology and biomechanics must synthesize
analyses of the haemodynamics, wall mechanics, and growth and remodeling kinetics [64, 65].
Such models can be referred to as fluid-structure-growth (FSG) models. Because of the very
different time scales between the cardiac cycle (i.e., seconds, for which FSI models hold)
and periods of arterial adaptation (i.e., days to months, for which G&R models hold), such
models can be formulated in a loosely coupled fashion [66].

2.1.2 Open problems

The main challenge to improve artery wall mechanics is prescribing the perivascular boundary
conditions in vivo because fundamental to any analysis in continuum biomechanics is a basic
knowledge of material behavior under conditions of interest. Such constitutive relations are
formulated most easily in vitro wherein geometry, applied loads, and responses can be well
controlled and measured. The primary motivation in biomechanics is to understand the in
vivo condition, that is, to help patients who are in need.

There are five basic steps in the formulation of any constitutive relation: delineating the
general characteristic behaviors, establishing an appropriate theoretical framework, identi-
fying specific functional forms, calculating best-fit values of the material parameters, and
evaluating the predictive capability of the final relations. Fortunately, it appears that we
can formulate general constitutive relations for the arterial wall based on in vitro data and
then focus primarily on identifying best-fit values of the associated material parameters from
in vivo data, which requires accurate information on the geometry (from medical imaging)
and haemodynamic loads (from imaging, pressure measurements, and CFD or FSI). Because
of the potentially large number of material parameters in constitutive relations for the wall,
particularly structurally-motivated ones, there is also a need to restrict the allowable para-
meter search space. Again, however, this can be accomplished based on in vitro findings,
including bounds on typical mass fractions, orientations of individual constituents, extents
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of residual and axial prestress, and so forth [46].
Most prior biomechanical analyses have employed simple boundary conditions, including

parabolic velocity profiles at inlets, traction-free outlets, and no perivascular support. Most
problems of clinical interest require more realistic conditions, however, with the computa-
tional domain for the fluid embedded within a closed-loop circulatory model and interactions
included between the fluid and a solid that is constrained by perivascular tissue. This com-
plexity presents new challenges related to prescribing boundary conditions.

First, there is the need to estimate parameters in reduced-order models of the distal res-
istance beds and to couple these models to the computational domain for the fluid. For
the case of distributed network models, this involves specifying anatomic and physiologic
parameters (e.g.,branching patterns, vessel diameters and lengths) that cannot be resolved
using standard noninvasive imaging (because of the micron diameter vessels). For lumped-
parameter models of downstream or upstream portions of the circulation excluded from the
computational domain, this necessitates assigning bulk resistances, impedances, compliance,
or inertial terms. In either the distributed or the lumped-parameter reduced-order models,
parameter values need to be “tuned” so the combined model matches available physiologic
data, including measured blood pressures and flows. Without question, fluid–solid interac-
tions in the arterial system depend strongly on the tissue or fluid outside the vessel of interest.
For example, many portions of the vasculature are embedded in soft tissue (e.g., epicardial
coronary arteries of the heart) or lie adjacent to hard tissues such as bones. Such support can
have a dramatic stabilizing influence on wall dynamics and should be modeled when possible
[67]. A second challenge, therefore, is the need to model the perivascular support and extract
information on the degree of support via noninvasive imaging methods.

2.2 Three-dimensional finite elasticity

2.2.1 Kinematics

Three-dimensional finite elasticity describes the behaviour of a continuous body β in terms of
kinematics, stress and deformation states. The body is assumed to occupy a compact domain
in the three-dimensional Euclidean space, denoted by E. β is made of material points whose
position relative to a generic observer O at a time t defines the configuration of the body
itself.

A configuration is a smooth-mapping of β onto a region of E. It is possible to define one
configuration that is constant in time, namely the reference configuration, which describes
the position of each material point with respect to its position in the reference configura-
tion. The reference configuration is also called undeformed configuration, while the current
configuration is also called deformed configuration. A transformation from undeformed con-
figuration denoted by Ω̂ to current configuration, denoted by Ω, is defined by a one-to-one,
orientation-preserving vector field L:

x = L(x̂, t),
x̂ = L−1(x, t).

(2.1)
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where x ∈ Ω and x̂ ∈ Ω̂.
The position of a material point in the reference configuration is denoted by ·̂ (i.e. x̂).

Furthermore, the differential operators and the element of area or volume are indicated by ·̂
(i.e. ∇̂, ∂̂Ω, Ω̂) when they are referred to the reference configuration. When it is clear from
the context that a quantity belong to the reference configuration we omit ·̂.

Using the transformation from reference configuration to the current configuration, (2.1),
the displacement field η in the reference configuration is defined as1:

η(x̂) = L(x̂)− x̂. (2.2)

Moreover it is possible to define a primary measure of deformation F called deformation
gradient, as

F = ∇̂L componentwise : Fij =
∂Li
∂x̂j

. (2.3)

In addition it is possible to introduce a symmetric positive-defined tensor called right Cauchy-
Green tensor denoted by C which measures the length of a vector δx after a generic deform-
ation. Indeed, a vector defined in the reference configuration δx̂ that follows the material
points is transformed within the first order into the vector δx = Fδx̂ and the length of δx is
given by: |δx|2 = δx̂T (FTF)δx̂. Hence it is convenient to introduce the right Cauchy-Green
tensor:

C = FTF. (2.4)

It is important for the following analisys to define the principal invariants, I1(C), I2(C),
I3(C) of C; they are necessary to analyze homogeneus pure strain and to describe the hy-
perelastic constitutive laws. The three principal invariants are:

I1(C) = tr(C),

I2(C) =
1

2
[(trC)2 − tr(C2)], (2.5)

I3(C) = det(C).

We also introduce the Green-Lagrange tensor E which is another useful measure of de-
formation:

E =
1

2
(C− I). (2.6)

The Cauchy stress tensor Ts represents the state of stress of the elastic body β in the
current configuration Ω. It is a symmetric second order tensor and it depends on the position
x and time t:

Ts = Ts(x, t).

Here we assume that the reference configuration is at its natural state, that is the Cauchy
stresses are everywhere zero.

1For the displacement field in the reference configuration, we omit the superscript ·̂ .
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Through the Piola tranformation it is possible to push back the state of stress of the
elastic body β into the reference configuration Ω̂:

P = JTsF
−T , (2.7)

where P is called the first Piola-Kirchhoff tensor, which indeed describes the stress state in
the reference configuration and J = det(F). We can also define the second Piola-Kirchhoff
tensor S

S = F−1P = JF−1TsF
−T , (2.8)

which is a symmetric tensor.

2.2.2 Equations of motion

It is possible to describe the equations of motion through the second law of dynamics. In fact
it is well known that the rate of change of the linear momentum equals the sum of surface
t and volume forces f. The equations of motion applied to an arbitrary volume V (t), with
boundary ∂V (t) become:

D

Dt

∫
V (t)

ρη̇ dV =

∫
V (t)

ρf dV +

∫
∂V (t)

t dS, (2.9)

where ρ is the density associated to the elastic body β and η̇ is the first time-derivative of
the displacement. Defining the continuity of the mass:

Dρ

Dt
+ ρ∇ · η̇ = 0, (2.10)

where Dρ
Dt

= ∂ρ
∂t

+ η̇ ·∇ρ , it is possible to rewrite the equations of motion using the transport
theorem and (2.10): ∫

V (t)

ρη̈ dV =

∫
V (t)

ρf dV +

∫
∂V (t)

t dS, (2.11)

where η̈ is the second time-derivative of the displacement. The substitution of the stress
vector with its representation by means of the Cauchy stress tensor Ts and the use of the
Gauss theorem allows to write:∫

V (t)

ρη̈ dV =

∫
V (t)

ρf dV +

∫
∂V (t)

∇ ·Ts dS. (2.12)

This equation describes the motion by Eulerian variables in the current configuration.
It is more convenient to rewrite the equations of motion in terms of Lagrangian variables.

From this point of view it is necessary to relate an infinitesimal volume and an infinitesimal
oriented surface in Ω(t) to their counterpart in the reference configuration. Using the Jacobian
J of the deformation gradient and the Piola transformation we have:
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{
dΩ = JdΩ̂

ndS = JF−T n̂dŜ.

Using these relations it is possible to rewrite (2.9) in the reference configuration:∫
V̂

Jρη̈ dV̂ =

∫
V̂

Jρf dV̂ +

∫
∂V̂

JTsF
−T n̂ dŜ. (2.13)

The quantity JTsF
−T is the first Piola-Kirchhoff tensor and so the last equation becomes:∫

V̂

ρ̂ η̈ dV̂ =

∫
V̂

ρ̂ f dV̂ +

∫
∂V̂

P n̂ dŜ. (2.14)

Finally, through the Gauss theorem, it is possible to transform the surface integral into
the volume integral: ∫

V̂

ρ̂ η̈ dV̂ =

∫
V̂

ρ̂ f dV̂ +

∫
∂V̂

∇̂ ·P dV̂ , (2.15)

which is valid for any V̂ ⊂ Ω̂, therefore we may infer the differential equations of the linear
momentum in the reference configuration:

ρ̂ η̈ − ∇̂ ·P = ρ̂ f. (2.16)

The differential problem needs to be finalized by setting the initial and boundary condi-
tions. The initial conditions read:

η(x̂, 0) = η0(x̂),

η̈(x̂, 0) = η̈0(x̂).
(2.17)

while, the most common boundary conditions are the following:

• Dirichlet conditions:

η(x̂, t) = g, x̂ ∈ Γ̂D; (2.18)

• Neumann conditions:

Pn̂(x̂, t) = h, x̂ ∈ Γ̂N, (2.19)

where Γ̂N ∪ Γ̂D ≡ ∂̂Ω, Γ̂N ∩ Γ̂D = ∅.

Moreover, it is necessary to define the relation between the stress tensor and the kinematic
variables to characterize the mechanical properties of the continuous body β. In particular it
is necessary to define the constitutive law that characterizes the material model adopted. In
the next paragraph, the hyperelastic materials are introduced from a general point of view.
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2.2. Three-dimensional finite elasticity

2.2.3 Hyperelastic materials

The constitutive law relates the stress tensor Ts and the kinematic variables. This relation
characterizes the mechanical properties of the continuous body β. A material is defined elastic
if the stress tensor P depends on the position of the material points x and the deformation
gradient F:

P = P̃(x,F). (2.20)

When the previous relation is indipedent of the position of the material points x the material
is called homogeneous. Finally a material is hyperelastic when it does not dissipate energy
during cyclic homogeneous deformations:

Wcycle =

∫ T

0

∫
Ω̂

P : Ḟ dΩ̂ dt = 0, (2.21)

along any deformation characterized by x(t = T ) = x(t = 0) at any point of β.
To define an hyperelastic material it is common to introduce the strain-energy function

W that represents the amount of elastic energy locally stored in the body β during the
deformation L. The form of the strain-energy function characterizes a material from another
one. In addition, for hyperelastic materials it is common to distinguish between compressible,
nearly incompressible and incompressible materials.

Hyperelastic compressible materials. An admissible homogeneous deformation for
compressible materials reads:

L(x̂, t) = F(t)x̂ + c(t), (2.22)

with the constraint J > 0. With the change of variable t→ F(t) the equation (2.21) becomes:

Wcycle = vol(Ω̂)

∫ F(τ)=F(0)

F(0)

P̃(F) : dF = 0. (2.23)

This relation implies that it must exist a scalar function whose gradient is equal to the first
Piola-Kirchhoff stress tensor P. In particular this scalar function is exactly the strain-energy
function W previously defined, thus it is possible to write

P(F) =
∂W (F)

∂F
. (2.24)

The strain-energy function W has to satisfy the axiom of frame indifference. In particular
W must be independent of rigid motion, since it depends only on the deformation L. We can
explain this concept introducing a generic rotation tensor R. The axiom of frame indifference,
in this case, reads

W (RF) = W (F). (2.25)

Choosing R =
√

CF−1 it is possible to rewrite the equation (2.25) as

W (F) = W (
√

C) := W̃ (C). (2.26)
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Hence the axiom of frame indifference implies that the strain-energy function depends only
on the right Cauchy-Green tensor C. Using equation (2.24) and the definition of F we have

dW =
∂W̃ (C)

∂C
: dC. (2.27)

Finally, using the definition (2.4), the simmetry of the right Cauchy-Green tensor and using
the chain rule

dW =
∂W̃ (C)

∂C
: dC = 2F

∂W̃ (C)

∂C
: dF, (2.28)

the first Piola-Kirchhoff stress tensor assumes the following form

P = 2F
∂W̃

∂C
. (2.29)

By inversion of the relation (2.7) it is possible to define also the Cauchy stress tensor Ts

that reads

Ts = 2J−1F
∂W̃

∂C
FT . (2.30)

To rewrite the strain-energy function for isotropic materials it is possible to use the Rivlin-
Ericksen representation theorem:

Theorem 2.2.1. For any isotropic hyperelastic materials the strain-energy function can be
written as:

W̃ (x̂,F) = W (x̂, I1(C), I2(C), I3(C)). (2.31)

For further information and proof of the theorem see [29].

Hence, for isotropic hyperelastic materials the expression that defines the stress tensors,
(2.29) and (2.30), can be rewritten only as a function of first derivative of the principal
invariants of the right Cauchy-Green tensor C. Employing the notation Ij = Ij(C) the first
Piola-Kirchhoff and Cauchy stress tensors becomes

P = 2F

[(
∂W

∂I1

+ I1
∂W

∂I2

)
I− ∂W

∂I2

C + I3
∂W

∂I3

C−1

]
,

Ts = 2I
−1/2
3

[(
∂W

∂I1

+ I1
∂W

∂I2

)
B− ∂W

∂I2

B2 + I3
∂W

∂I3

I

]
,

(2.32)

where B is the left Cauchy-Green tensor defined as B = FFT . Any compressible hyperelastic
material depends on volume changes through the third principal invariant I3. Indeed, I3 is
related to J by the relation I3 = J2.
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2.2. Three-dimensional finite elasticity

Hyperelastic incompressible materials. Incompressible materials have to satisfy
the constraint J = 1, i.e. an incompressible material does not change volume during the
deformation. An admissible deformation for this kind of materials is{

L(x̂, t) = F(t)x̂ + c(t),

det(F) = 1.
(2.33)

It is possible to prove [29] that the first Piola-Kirchhoff tensor has the following expression

P =
∂W

∂F
(F)− p

∂J

∂F
, (2.34)

where p is a scalar field called pressure. As for compressible materials, the axiom of frame
indifference implies that W is a funtion of right Cauchy-Green tensor C only. So, it is possible
to derive the following relations for the stress tensors

P = 2F
∂W̃

∂C
− pF−T , Ts = 2F

∂W̃

∂C
FT − pI. (2.35)

Using the same considerations made for compressible materials it is possible to define the
stress tensors as a function of the invariants of C

P = 2

(
∂W

∂I1

+ I1
∂W

∂I2

)
F− 2

∂W

∂I2

FC− pF−T . (2.36)

For incompressible materials the hydrostatic pressure plays the role of Lagrange multiplier
associated to the incompressibility constraint J = 1.

Hyperelastic nearly incompressible materials. A nearly incompressible material
can be associated to any incompressible material. Indeed, it is possible to demonstrate
that for any strain energy function of an incompressible material Winc there exists a nearly
incompressible material with the following constitutive law

P =
∂Wε

∂F
(x̂, I +∇η), (2.37)

where

Wε = Winc(x̂, [det(F)]−1/3F) +
1

2ε
(detF− 1)2,

with ε a small parameter.
For practical applications it is common to divide the strain-energy function into two

parts. The first one is the isochoric part Wiso that preserving volume during deformation.
The second one is the volumetric part Wvol that depends on the Jacobian of the deformation
gradient J

W (I1(C), I2(C), J) = Wiso(I1(C), I2(C)) +Wvol(J), (2.38)
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Chapter 2. Artery wall mechanics

where C is the so-called unimodular right Cauchy-Green tensor, defined as C = J−2/3C and
such that det(C) = 1.

The nearly incompressible materials are preferred to the incompressible materials because
it is more common to have small compressibility in the hyperelastic materials and tipically
also in the biological tissues [32]. For this reason the use of nearly incompressible materials
is the correct choice to well describe the arterial wall. Moreover, the problem is simpler than
in incompressible materials since we do not have to treat the incompressibility constraint.
Nevertheless, the price to pay for the simplicity of the formulation is that the resultating
problem is badly conditioned.

2.2.4 Structural models within this work

In this work, two structural models which are commonly used in literature to describe
the arterial tissue have been used. Namely, St.Venant-Kirchhoff and Exponential mod-
els. They have been developed in the framework of nonlinear finite elasticity [27]. From
the mathematical point of view, these models describe the biological tissue as a compress-
ible (the former) and nearly-incompressible (the latter), isotropic and hyperelastic material.
From experimental observations, the arterial tissue is known to be incompressible or nearly-
incompressible.

St.Venant-Kirchhoff model. The St.Venant-Kirchhoff model is the simplest com-
pressible material. Its strain-energy function is defined as a quadratic isotropic function of
the Green-Lagrange tensor:

W = W (E) =
λ

2
(trE)2 + µtr(E2). (2.39)

where λ and µ are the first and the second Lamè constants of the material:

λ =
νE

(1 + ν)(1− 2ν)
, (2.40)

µ =
E

2(1 + ν)
, (2.41)

where ν and E are respectively the Poisson’s ratio and the Young modulus. Using first
equation of (2.32) it is possible to define the corrisponding first Piola-Kirchhoff stress tensor
in terms of F and E:

P =
λ

2
(I1(C)− 3)F− µF + µFC. (2.42)
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2.2. Three-dimensional finite elasticity

It is more convenient to rewrite (2.42) in terms of displacements η:

P(η) = λ(∇ · η)I + µ(∇η +∇ηT )

+
λ

2
(∇η : ∇η)I + µ∇ηT∇η

+ λ(∇ · η)∇η +
λ

2
(∇̂η : ∇̂η)∇̂η

+ µ∇̂η(∇̂η + ∇̂ηT ) + µ∇̂η∇̂ηT ∇̂η.

(2.43)

This material does not satisfies the constraint of policonvexity [68, 30]. Because of this, it is
not usually used for problems with large levels of deformation.

Exponential nearly incompressible model. The exponential model is a nearly in-
compressible material. In particular, this material is widely used for soft bilogical tissues
like the walls of the arteries. The strain-energy function, also in this case, is divided into
isochoric and volumetric part

W =
α

2γ
(eγ(I1(C)−3) − 1) +

κ

4
[(J − 1)2 + (lnJ)2], (2.44)

where α, γ and κ are respectively the shear modulus, the exponential coefficient and bulk
modulus. The first Piola-Kirchhoff stress tensor after some calculation reads

P = αJ−2/3

(
F− 1

3
I1(C)F−T

)
eγ(I1(C−3) + J

κ

2

(
J − 1 +

1

J
lnJ

)
F−T . (2.45)

In this case the mathematical problem is well-posed, because the strain-energy function W
satifies the policonvexity constraint. It is possible to relate κ and α with the Poisson’s ratio
and the Young modulus

κ =
E

3(1− 2ν)
, (2.46)

α =
E

2(1 + ν)
, (2.47)

for the consistency of the nonlinear consitutive laws with the linear constitutive law, in the
region of small deformations. The parameter γ is peculiar of this kind of material and tunes
the stiffness for large displacements. In [29] it is suggested to use a parameter κ in the
following range

µ102 ≤ κ ≤ µ106.

This choice does not influence strongly the comparison between materials because the stress-
strain response in the region of small deformations is very similar for nonlinear structural
models and linear elasticity also with such parameters. However, for a systematic comparative
analysis between the different consitutive laws, could be necessary to use the relations (2.46)
and (2.47).
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2.3 Finite-element formulation

The finite-element formulation is the numerical approximation considered within this work
for the spatial variables. The solution of a time-varying problem needs also a temporal scheme
to integrate the equations. This leads to the solution of a linear system at each time step.
In this section we give a brief explanation of these issues.

2.3.1 Weak formulation of the structural problem

We derive the weak form in a formal way by multiplying equation (2.16) by a test function

v and integrating on Ω̂∫
Ω̂

ρ̂ η̈ · v dΩ̂ =

∫
Ω̂

ρ̂ f · v dΩ̂ +

∫
Ω̂

(∇̂ ·P) · v dΩ̂. (2.48)

In particular the test function has to respect the constraint

v = 0 on Γ̂D. (2.49)

Using the Gauss theorem and the Dirichlet boundary conditions (2.18) we obtain∫
Ω̂

ρ̂ η̈ · v dΩ̂ =

∫
Ω̂

ρ̂ f · v dΩ̂−
∫

Ω̂

∇̂(v) : P dΩ̂ +

∫
Γ̂N

ĥ · v dγ̂. (2.50)

If we assume that v is a velocity, so, ∇̂(v) is equal to δḞ and the last equation assumes
the following expression∫

Ω̂

ρ̂ η̈ · v dΩ̂ =

∫
Ω̂

ρ̂ f · v dΩ̂−
∫

Ω̂

δḞ : P dΩ̂ +

∫
Γ̂N

ĥ · v dγ̂. (2.51)

In particular, we are interested on the stiffness term
∫

Ω̂
δḞ : P dΩ̂ that depends on the

constitutive law adopted.
We are now in the position of giving the correct functional setting of (2.16) by employing

the Sobolev spaces introduced in the appendix.

Weak-formulation 2.1. (Continuous setting). For any t > 0 find η = η(t) ∈ V(Ω̂):

∫
Ω̂

ρ̂ η̈ · v dΩ̂ + a(η, v) = F (v) ∀v ∈ V(Ω̂),

η(0) = η0,

η̇(0) = η̇0.

(2.52)

where
V(Ω̂) = {v ∈ H1(Ω̂) : v |Γ̂N

= 0},
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and bilinear form a(·,·) and right-hand side F(·) assume the following definitions

a(η, v) =

∫
Ω̂

P : ∇̂v dΩ̂,

F (v) =

∫
Γ̂N

ĥ · v dγ̂ +

∫
Ω̂

ρ̂ f · v dΩ̂.

(2.53)

We have assumed, for simplicity, only homogeneous Dirichlet boundary conditions (for
non-homogeneous Dirichlet boundary conditions see for example [69]).

The discrete version of (2.52) is obtained by the Galerkin method [69] where V(Ω̂) is
replaced by a subspace Vh of finite dimension. As usual a finite element formulation employs
a mesh of the reference domain Ω̂ to build Vh. The computational domain is thus defined
as:

Ω̂h =
⋃
K∈T̂h

K, (2.54)

where K indicates the generic element of the mesh T̂h. Using Lagrangian finite elements, we
have the following functional space:

Xr
h = {vh ∈ C0(Ω̂) : vh|K ∈ Pr,∀K ∈ T̂h} r = 1, 2, ..., (2.55)

where Pr is the polynomial space of degree r. Vh is then a subspace of Xr
h obtained by

imposing the essential boundary conditions (2.18). The discrete version of (2.52) becomes:

Weak-formulation 2.2. (Discrete setting). For any t > 0 find ηh = ηh(t) ∈ Vh(Ω̂h):

∫
Ω̂h

ρ̂ η̈h · vh dΩ̂ + a(ηh, vh) = F (vh) ∀vh ∈ Vh(Ω̂h),

ηh(0) = ηh0 ,

η̇h(0) = η̇h0 .

(2.56)

We can introduce the following approximate solution, associated to the discretization

ηh(x̂) =

3Nh∑
j=1

ηjϕj(x̂), (2.57)

where ηj, j = 1, 2, ..., 3Nh are unknown coefficients and {ϕj, j = 1, 2, ..., 3Nh} are a basis of
Vh. If we define η as the vector whose components are the unknown coefficients ηj, it is
possible to rewrite the discrete weak formulation as a system of ordinary differential equations
(ODEs):

Mη̈ + k(η) = f, (2.58)
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where

Mij =

∫
Ω̂h

ρ̂ ϕjϕi dΩ̂,

k(η)i =

∫
Ω̂h

P

(
3Nh∑
j=1

ηjϕj(x̂)

)
: ∇̂ϕi dΩ̂,

fi =

∫
Ω̂h

3Nh∑
j=1

h0jϕjϕi dΩ̂ +

∫
Ω̂h

3Nh∑
j=1

bjϕjϕi dΩ̂.

(2.59)

In particular Mij is the mass matrix, k(η)i is the non-linear stiffness vector and fi is the
forcing term.

2.3.2 Time discretization

The Newmark scheme can be used for the time-discretization. In particular, from equation
(2.58), the time discretization is obtained in the following manner:

• Definition of a time interval I = [0,T];

• Uniform discretization of interval I→ In = [tn, tn+1], with δt = tn+1 − tn;

• Application of the Newmark scheme to system of ODEs (2.58)

Mη̈n+1 + k(ηn+1) = fn+1,

η̇n+1 = η̇n + δt[(1− θ)η̈n + θη̈n+1],

η̈n+1 =
2

ζδt2
ηn+1 − 2

ζδt2
(ηn + δtη̇n)− 1− ζ

ζ
η̈n.

(2.60)

Hence:

2

δt2
Mηn+1 + ζk(ηn+1) =

2

δt2
M(ηn + δtη̇n)− (1− ζ)k(ηn) + (1− ζ)fn + ζfn + 1, (2.61)

where we have set: gs = g(ts). Here, ζ and θ are the coefficients of the Newmark’s method.
The stability of the Newmark’s method depends on the choice of ζ and θ. The following

relations describe the stability conditions for a general Newmark’s method applied to a second
order dynamical system (see [70]):

Unconditional stability ζ ≥ θ ≥ 1

2
, (2.62)

Conditional stability θ ≥ 1

2
, ζ < θ, provided that ωhδt ≤ Ωcrit, (2.63)
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where ωh is the maximum natural frequency and Ωcrit is defined by the following relation:

Ωcrit =

(
θ

2
− ζ

2

)− 1
2

. (2.64)

In table 2.1 we summarize the well-known members of the Newmark family of methods
[70]

Table 2.1: Well-known Newmark methods.

Method Type ζ θ Stability condition OA

average acceleration Implicit 0.5 0.5 Unconditional 2
linear acceleration Implicit 0.33 0.5 Conditional 2
Fox-Goodwin Implicit 0.1667 0.5 Conditional 2
central difference Explicit 0 0.5 Conditional 2

The choice of average acceleration method gives the optimal time convergence rate. How-
ever it may cause spurios oscillations since there is no numerical damping. It is possible
to introduce damping by using a parameter ζ bigger than 0.5. For example the choice of
ζ = 1 and θ = 0.5 is a fully dissipative method that cuts the spurious oscillations of the
solution. This choice has been used for quasi-static problems. For dynamical problems it is
necessary to have a good order of accurancy (OA), hence a second order method like average
acceleration is preferred.

2.3.3 Linearization

As previously remarked, the stiffness term k(η) is non-linear with respect to the displacement
η. Hence to solve system (2.58) it is necessary to find the solution as the limit of solutions
of suitable linearized problems. The linearization is obtained by the Newton method [71].
Indeed, the solution of (2.58) is equivalent to find the root η of the following problem:

Z(η) =
2

δt2
Mη + ζk(η)− 2

δt2
M(ηn − δtη̇n) + (1− ζ)k(ηn)− (1− ζ)fn − ζfn+1 = 0, (2.65)

where we have dropped the temporal current index n+ 1 for the sake of clarity.

The unknown of the problem at each Newton iteration k is the displacement η(k) which
is set initially to ηn. It is necessary to introduce the Jacobian2 JZ(η(k)) = DZ(η(k)) and the
increment of solution δη(k+1) = η(k+1) − η(k). Hence the Newton iterations become:

2DZ(η(k)) is the directional derivative of Z(η(k)). For more details see [13, 68].
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Let η(0) ∈ R3 be given (for instance from the previous time-step), iterate for k = 1, 2, ...
until convergence:

solve JZ(η(k+1))δη(k) = −Z(η(k)),

define η(k+1) = η(k) + δη(k+1),
(2.66)

The test for convergence is the infinity norm of the residual. In particular, defining a
tolerance εR = εRabs

+ |Z(η(0))| εRrel
the stopping criterion for the Newton method is the

following:
‖Z(η(k))‖∞ < εR. (2.67)

To solve the linear system (2.66) the preconditioned GMRES (P-GMRES) method [71]
has been used. The criterion to stop the P-GMRES method is to compare the norm of
displacement η(k+1) between iteration ` + 1 and iteration ` of the method3. If εP-GMRES is
the tolerance of P-GMRES, the convergence test is:

‖η(k+1)
(`+1) − η

(k+1)
(`) ‖∞ < εP−GMRES . (2.68)

When P-GMRES method reaches to convergence, the solution is used to recompute the
system (2.66) and in particular the residual of the system to verify the convergence of Newton
method. The P-GMRES method will be more efficient when the number of iterations for
convergence is small.

Summarizing, the steps for the solution of the nonlinear system (2.58) at each time-step
are the following:

1. Choose an initial guess η(0) ∈ R3 and choose the tolerances εR and εP-GMRES;

2. Enter into Newton’s loop, compute the jacobian and the residual;

3. If the residual is larger than εR, solve the linearized system (2.66) with P-GMRES

method until ‖η(k+1)
(`+1) − η

(k+1)
(`) ‖∞ < εP-GMRES;

4. Re-build the system (2.66), until convergence.

2.3.4 Quadrature rules and computation of integrals

The calculation of the integrals required to build the matrices in the finite element formulation
of the structural problem are obtained by quadrature formulas. For each quadrature point
a local tensor is defined and a loop on quadrature points perform the computation of the
integrals. In particular for a generic stiffness term, we have:∫

K

P(ηh) : ∇̂ϕi dVK ≈
∑
ig

P(η)ig∇̂ϕigωig, (2.69)

where g indicate the quadrature point and ωig are the corresponding weights.

3` is the internal iteration of the P-GMRES method.
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Stiffness term computation: St.Venant-Kirchhoff For St.Venant-Kirchhoff ma-
terial, the first Piola-Kirchhoff tensor is defined in (2.43), here reported:

P(η) = λ(∇ · η)I + µ(∇η +∇ηT )

+
λ

2
(∇η : ∇η)I + µ∇ηT∇η

+ λ(∇ · η)∇η +
λ

2
(∇̂η : ∇̂η)∇̂η

+ µ∇̂η(∇̂η + ∇̂ηT ) + µ∇̂η∇̂ηT ∇̂η.

The calculation of the bilinear form a(η,φ) is performed as:∫
K

P(ηh) : ∇̂φ dVK ≈
∑

ig

(
λ(∇̂ · ηig)I + µ(∇̂ηig + ∇̂ηTig)

+
λ

2
(∇̂ηig : ∇̂ηig)I + µ∇̂ηTig∇̂ηig

+ λ(∇̂ · ηig)∇̂ηig +
λ

2
(∇̂ηig : ∇̂ηig)∇̂ηig

+ µ∇̂ηig(∇̂ηig + ∇̂ηTig) + µ∇̂ηig∇̂ηTig∇̂ηig
)
∇̂φig ωig,

(2.70)

For this material the linearization of the stiffness term is obtained using the directional
derivatives [68, 13]:

DP(η)[δη] = λ(∇̂ · δη) + µ(∇̂δη + (∇̂δη)) + λ∇̂η : ∇̂δη

+ λ(∇̂ · η)∇̂δη + λ(∇̂ · δη) +
λ

2
(∇̂δη : ∇̂η)∇̂η

+
λ

2
(∇̂η : ∇̂δη)∇̂η +

λ

2
(∇̂η : ∇̂η)∇̂δη

+ µ(∇̂η))T ∇̂δη + µ(∇̂δη)T ∇̂η + µ∇̂η∇̂δη + µ∇̂δη∇̂η

+ µ∇̂η(∇̂δη)T + µ∇̂δη(∇̂η)T + µ∇̂δη(∇̂η)T ∇̂η

+ µ∇̂η(∇̂δη)T ∇̂η + µ∇̂η(∇̂η)T ∇̂δη.

(2.71)

Stiffness term computation: Exponential For exponential material, the first Piola-
Kirchhoff tensor is defined in (2.45), here reported:

P = αJ−2/3

(
F− 1

3
I1(C)F−T

)
eγ(I1(C−3) + J

κ

2

(
J − 1 +

1

J
lnJ

)
F−T .

The calculation of the bilinear form a(η,φ) is performed as:∫
K

P(ηh) : ∇̂φ dVK ≈
∑

ig

[
αJ−2/3

(
Fig −

1

3
I1(C)F−Tig

)
eγ(I1(C−3)

+ J
κ

2

(
J − 1 +

1

J
lnJ
)
F−Tig

]
∇̂φigωig.

(2.72)
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We obtain the linearization of the stiffness term with respect to F. In particular, we
introduce the fourth order tensor C:

C =
∂P

∂F
, (2.73)

and we linearize the stiffness term using the directional derivatives with respect to F separ-
ating the isochoric and the volumetric part:

Ciso : δF = −2

3
αeγ(I1(C−3)J−2/3(1 + γI1(C))(F−T : δF)F

+
2

9
αeγ(I1(C−3)I1(C)(1 + γI1(C))(F−T : δF)F−T

− 2

3
αeγ(I1(C−3)J−2/3(1 + γI1(C))(F : δF)F−T

+ 2αeγ(I1(C−3)J−4/3(F : δF)F

+ αeγ(I1(C−3)J−2/3δF

+
2

3
αeγ(I1(C−3)I1(C)F−T : δFTF−T .

(2.74)

Cvol : δF =
κ

2
J

(
2J − 1 +

1

J

)
(F−T : δF)F−T

− κ

2
(J2 − J + lnJ)F−T δFTF−T .

(2.75)

For further information [72].
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Chapter 3

The recovering of the correct initial
geometry

In this chapter we describe the available methodologies aimed at finding the correct initial
reference configuration for FSI simulations in the human arteries for computational purposes.
In the following, we also explain our approach to the problem and we describe the algorithm
implemented in the parallel library LifeV [22]. Finally, numerical results on simple geometries
are presented.

3.1 The need to use a deflated geometry

The mechanical behavior of blood vessel tissue is well described by means of large-deformation,
three-dimensional solid or shell modeling [28, 42]. A total Lagrangian formulation with a hy-
perelastic constitutive law is typically employed. In hyperelasticity, the formulation relies on
the existence of a unique stress-free configuration, which acts as a reference or initial config-
uration from which the displacement is computed. In vascular FSI analysis, patient-specific
geometries of blood vessels are obtained from medical in vivo imaging data, for example from
MRI or CT [73, 74]. The resulting images and reconstructed three-dimensional geometries
could be assumed in first approximation as related to the diastole [73], and therefore repres-
ent a configuration which is submitted to an in vivo load. Indeed, the blood vessels are in a
state of mechanical stress that puts them in equilibrium with the load coming from the blood
flow at rest (i.e. diastolic blood pressure). Reconstructed structures are preloaded by the
diastolic blood pressure (≈ 80 mmHg) and this preloading is commonly known as prestress
load.

A common approach in FSI simulations to take into account this phenomenon is to neglect
the predeformation of the object of interest under in vivo loads and to assume the obtained
configuration as stress-free, leading to non-physical large deformations. This approach would
be exact for the linear infinitesimal elasticity but it is not accurate when the vessel is described
within finite elasticity. We can refer to fig.3.1 to better understand what happens. The blue
line (B–D) is the relation that is experienced in vivo by the artery. This is the true behaviour
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Chapter 3. The recovering of the correct initial geometry

Figure 3.1: Pressure-stretch curve for an artery with nonlinear material beha-
viour. Modified from [75].

of the artery and it should be considered for real FSI simulations. However, from images, we
start from the reconstructed geometry at C1. When this image-reconstructed geometry is
used as reference geometry without prestress incorporation, the red curve (C1-E1) is followed
during loading. This leads to inaccurate FSI solutions, since we are not working in the right
zone of the stress-deformation curve. Indeed, when comparing the real diastolic point (D)
with E1, we see that a smaller systolic geometry should be obtained, with different stress
distributions (D appears to be more stressed than E1). A second common approach is to
assume that reconstructed geometry is loaded with an average pressure of 70-85 mmHg (C1
in place of C2) and to reach systolic conditions applying a pressure increment of 35-50 mmHg
(E2). We are then traslating C1-F curve upwards to create C2-E2 curve. Also in this case
we obtain erroneous results about deformation and stress state, as depicted in fig.3.1.

To achieve more realistic results, different strategies have been considered so far to model
this prestress effect in arteries. We can discern two main approaches:

• a prestress driven approach, in which we aim at calculating the correct stress state of
an image-reconstructed vessel. This means that C2 is reached from C1, with just a
prestress included in the Piola tensor. From C2 , the pressure can be increased to a
systolic pressure reaching the correct systolic condition (C2-D).

• a zero-pressure geometry driven approach, in which we aim at calculating the correct
zero-pressure geometry starting from an image-reconstructed pressurized one. In this
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case, starting from C1 geometry we calculate the geometry at A by deflation and then
we apply the systolic pressure to this configuration (A-D).

3.2 State of the art

Prestress driven approaches A pure prestress driven approach is followed in [23],
whereby the stress state of the reference image-based geometry is computed by an iterative
procedure assuming a diastolic load of 85 mmHg and then used as starting point for the FSI
analysis. In particular, they modified the variational formulation of the balance of linear
momentum for the solid adding an a priori specified prestress tensor S0, designed such that
in the absence of displacement the blood vessel is in equilibrium with the blood flow forces

P = F(S + S0). (3.1)

This design condition leads to the following variational problem

Find the symmetric prestress tensor S0, such that for all the test functions v∫
Ω̂

∇̂(v) : S0 dΩ̂−
∫

Σ̂

h̃ · v dγ̂ = 0, (3.2)

where Ω̂ is the blood vessel reference configuration coming from imaging data, Σ̂ is the
fluid-structure interface in the same configuration, and h̃ is the diastolic load of 85 mmHg.

They obtain a particular solution for the state of prestress in (3.2) by means of the
following procedure. Start with step n = 1 and set Sn0 = 0, then follow these steps:

1. Set S0 = Sn0 and η = 0, wich gives F = I and S = 0;

2. From tn → tn+1 solve the variational problem

Find η such that for all v∫
Ω̂

ρ̂η̈ · v dΩ̂ +

∫
Ω̂

∇̂(v) : F(S + S0) dΩ̂ +

∫
Σ̂

h̃ · v dγ̂ = 0,

where

S = µJ−2/3(I− 1

3
trCC−1) +

1

2
κ(J2 − 1)C−1, (3.3)

F = I +
∂η

∂X
, (3.4)

with η the displacement with respect to the reference configuration Ω̂ and X the co-
ordinates of the reference configuration;

3. Update Sn+1
0 = S + Sn0 and increment n;
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4. If η → 0 we have as a result that F→ I, S→ 0, and we arrive at the solution of (3.2),
else continue with the next iteration.

In (3.3) µ and κ are interpreted as the blood vessel shear and bulk moduli, respectively (see
[76]).

We observe that in (3.3) the value of C = FTF used by the authors is approximated.
Indeed, in (3.4) η is unknown and so, referring to fig.3.2 and to eq.(3.4), we have F = FA

and not F = FC2 . For this reason, in (3.3) the computed value of S is not calculated in the

reference geometry Ω̂.

Figure 3.2: Tipical stress-strain curve for an exponential material.

Another interesting method is the modified updated Lagrangian formulation (MULF),
proposed in [24]. The MULF is algorithmically similar to the no-prestressing analisys, no
buckling or bifurcation phenomena appear at least in the context of AAA simulation [24] and
the resulting prestressed state is unique. However, it does not yield any deformations and so
a zero-pressure geometry is not calculated.

Zero-pressure driven approaches Most of the works belonging to this strategy are
based on the Inverse design (ID) analisys, that aims at solving the inverse elastostatic problem
[77, 26, 78, 25]. Classically, the question to be answered is how a body has to be shaped in
the reference configuration such that under a defined set of loads it takes on a prescribed
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shape. Hence, as opposed to standard forward simulations, the spatial configuration and the
set of loads are assumed to be known where the initial stress-free material configuration is
to be determined. The inverse design problem basically consists on formulating the usual
finite deformation balance equation and boundary conditions with respect to the known
prescribed spatial configuration and the known external loads. Then, different methods
could be developed that solves for the unknown coordinates of the material configuration. In
the context of finite deformation this yields a system of nonlinear equations that is usually
solved for incrementals applying some Newton-type scheme.

Methods for ID analysis have been originally proposed in [79] and have been analyzed in
[80]. Later, other ID methods have been proposed in the context of finite deformation [81]
and in the context of incompressible finite deformation [82]. An ID analysis following the
approach in [81] has been employed to perform prestressing of abdominal aortic aneurysm
(AAA) structures [77] and in the context of membrane modeling of cerebral aneurysms [14].
Both contributions are limited with respect to demonstrating general usability of inverse
design analysis in the context of fully non-linear finite deformation analysis of predeformed
structures.

As observed in [80], ID linear systems of equations are nonsymmetric and therefore ID
analysis comes with an increased computational cost compared with standard forward tech-
niques. It has been demonstrated that the obtained stress-free material configuration is not
unique when inverse design analysis is applied to the full set of non-linear elasticity equations
[81]. The ID method is appealing from the theory perspective but its non-uniqueness can be
a major drawback when applied to e.g. thin walled structures that tend to exhibit bifurcation
or buckling phenomena, as showed in fig.3.3.

ID analysis was later extended by other researchers to include anisotropic elastic solids
via a total [83, 78] and an updated [26, 24] Lagrange formulation. Following an updated
Lagrangian approach, in [26] the authors have introduced the backward incremetal method
(BI). This method aimed at the calculation of the initial wall stress in AAA and it is based
on the backward application of computed forward deformations. If a load is applied on the
initial geometry Υ0 (zero-pressure configuration), at time ti the wall stress depends on the
current shape, the pressure Pi, the deformations to the current configuration Ui and the shear
modulus G, we can write

σi = σ(ti) = σ(Υi, Pi, Ui, G) ,

where σ represents the Cauchy stress and σi fully describes this configuration. At every
iteration i, instead of taking σ(ti) = σ(Υi, Pi, Ui, G) as the next configuration, they take
σ(ti) = σ(Υr, Pi, Ui, G), with Υr as reference geometry (configuration coming from medical
images, loaded with a non-zero pressure Pr). In this way they implicitly update Υ0 by
interpreting the computed forward deformations on the fixed reference domain. The principle
of the backward modelling is schematically depicted in fig.3.4. During simulations they
gradually increase the pressure in Υr in n steps to Pr, using

Pj = Pr sin

(
jπ

2n

)
, 0 ≤ j ≤ n,
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Chapter 3. The recovering of the correct initial geometry

Figure 3.3: Deformation of an AAA when failure of convergence for ID appears.
Gray cut indicates stress-free material configuration from ID analysis exhibiting
physically meaningless buckling mode. Color indicates displacement norm in mm
[24].

and the process converges to a total deformation as n → ∞. At the end of the process
they computed the approximation for the unloaded geometry by applying the opposite of the
total deformation on Υr to obtain Υ0. Although small, some stresses were still present in the
zero-pressure geometry Υ0. Indeed, it has been found that for all computed zero-pressure
geometries the maximum stress is in the order of 10-15 kPa, representing 3-6% of the peak
stresses at systolic pressure [84]. Compared to ID, the BI has two main advantages. First
of all, it can be implemented starting from a model for forward elastic deformations without
modifications to the underlying system being solved. This means that the convergence char-
acteristics of the forward model are maintained. Secondly, the approach is more generic,
since it can be applied using any constitutive model without modifications to the backward
method itself.

In [26] the authors also proposed a possible alternative method to compute the equilibrium
stress on the diastolic geometry. They first assumed a very high shear modulus and then
compute the stress in the whole domain by performing a forward simulation with the reference
diastolic pressure, σ̂, as boundary condition. This is done by assuming that the geometry is
similar to the reference one, and this is realistic due to the high stiffness. They performed
simulations for the uniaxial deformation of a cube and the inflation of a cylinder and the
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Figure 3.4: Backward incremental modelling approach: Υr reference geometry
reconstructed from medical image and loaded with a pressure Pr, Υ0 initial geo-
metry assumed to be unloaded, Υi

r̄ forward domain that can be computed by
applying deformations on the reference domain at ith iteration and related de-
formation F r̄,i

r , Υi
0 ith approximation of Υ0, F 0,i

r deformation from Υr to Υi
0 [26].

resulting stress fields were found to be similar to the stress computed with the backward
incremental method, but convergence was generally very poor. Because of the additional
disadvantage that this method does not directly provide a deformation field to Υ0, and
therefore also does not provide a simple approximation of the wall strain, they did not
pursued this approach any further.

A further different strategy is suggested in [49].

3.3 Description of the strategy used in this work

The approach we followed is a zero-pressure geometry driven one. The goal is to recover a
deflated geometry starting from an inflated one. At first, we obtain the patient-specific ca-
rotid geometry from MRI or CT scans by using the computer-assisted fast marching level set
method implemented in the open-source Vascular Modeling ToolKit (VMTK) [85]. Indeed,
from the geometrical reconstruction of radiological images, one obtains a diastolic intramural
pressure geometry. The problem is that by performing numerical simulations in this compu-
tational domain we do not take into account for the prestressed state in vessel walls. Then,
if we impose a pressure waveform in the reconstructed geometry which is given by the real
one minus the diastolic one, we are not working at the right zone of the stress-deformation
curve, leading to approximated FSI simulation results.

We simulated this prestress effect calculating a 0 mmHg intramural pressure geometry
starting from the reconstructed one, using a fixed point method to solve the inverse problem.
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Chapter 3. The recovering of the correct initial geometry

By applying the whole pressure waveform to this deflated configuration it is then possible to
recover more realistic results in FSI simulations (A-D in fig.3.1). Therefore, we have to solve
the following inverse problem:

Given the MRI diastolic recontructed geometry Ω̂, find the zero-pressure geometry Ω0 such
that

S(Ω0, Pd) = Ω̂,

where S is the structural operator which, given a domain Ω0 and an internal load Pd, gives
the domain Ω̂ obtained by moving the coordinates accordingly to the computed displacement.
To solve such inverse problem, we propose here the following algorithm:

Algorithm.

Given an initial loaded geometry Ω̂ and a suitable tolerance ε, do until con-
vergence at iteration k

1. Solve the structural problem (2.15) on Ω̂ with an internal load Pd, ob-

taining a set of displacements η̃(k);

2. Deflate Ω̂ to find Ω
(k)
0

Ω
(k)
0 = Ω̂(k) − η̃(k); (3.5)

3. Solve the structural problem (2.15) on Ω
(k)
0 with the same load used in

step 1, obtaining a set of displacements λ̃
(k+1)

;

4. Inflate Ω
(k)
0 to find Ω̂(k+1)

Ω̂(k+1) = Ω
(k)
0 + λ̃

(k+1)
; (3.6)

5. Calculate the residual χ(k+1) = Ω̂(k+1) − Ω̂ and verify the stopping cri-
terion

‖ χ(k+1) ‖∞
‖ Ω̂ ‖∞

≤ ε; (3.7)

6. If the residual does not satisfy the stopping criterion then update the set
of displacements η̃(k) using a relaxation parameter α

η̃(k+1) = η̃(k) + αχ(k+1), (3.8)

and return to step 2, else the solution Ω
(k)
0 + λ̃

(k+1)
≈ Ω̂ has been found.

The infinity norm in (3.7), for the case of a vector x = (x1, ..., xn) in finite dimensional
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coordinate space, takes the form

‖x‖∞ = max {|x1|, ..., |xn|} .

When we consider image-reconstructed human geometries, the internal load Pd used in
step 1 and 3 represent the average intramural pressure of 80 mmHg coming from radiological
images. In case, this choice could be more patient-specific if this average pressure is directly
measured on the patient. With regard to this pressure load, we can see step 1 and 3 as
inflation steps in which a particular geometry is inflated with this level of pressure, and step
2 as a deflation step where we deflate a geometry with a set of displacements computed at
the first inflation step.

Our approach is similar to the one followed in [67]. In that work the authors dealt with
FSI simulation of an ascending aorta. The blood flow domain is initialized by calculating the
steady solution of a rigid wall Navier-Stokes flow with a prescribed input flow corresponding
to the average cardiac output, i.e. the stroke volume multiplied by the heart rate. In
order to compute the mapping from the unknown reference configuration Ω0 onto the loaded
configuration Ω̂, they used the residual Pf

Σ̂
, which represents the fluid stress tensor at the

interface Σ̂, obtained from the rigid wall fluid solution. Then they solved the inverse problem
using a simple fixed point algorithm.

The use of the residual Pf
Σ̂

does not result in a better patient-specific initial condition
because they take into account the tangential fluid stress tensor component not even present
in a diastolic radiological image since the blood is at rest. This is the reason we preferred a
simple average cardiac cycle pressure (or the average patient-specific one, if available) in our
algorithm.

3.4 Numerical results

In this section we present the numerical results on simple geometries, i.e. a cube and an hollow
cylinder. In all the numerical simulations, we consider the compressible St.Venant-Kirchhoff
material and the nearly incompressible Exponential material. The first Piola-Kirchhoff tensor
for the St.Venant-Kirchhoff material is defined in (2.42), here reported:

P =
λ

2
(I1(C)− 3)F− µF + µFC

For the Exponential material it is defined in (2.45), here reported:

P = αJ−2/3

(
F− 1

3
I1(C)F−T

)
eγ(I1(C−3) + J

κ

2

(
J − 1 +

1

J
lnJ

)
F−T .

The finite element discretization is performed by P1 elements and the mesh properties
are showed in table 3.1 and 3.3. The set of structural parameters are listed in table 3.2 and
are typical values for biological tissues [13, 28, 38, 39].
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3.4.1 Cube

We consider the case of homogeneous pure strain of a cube. The test consists in the normal
traction of a cube in the direction of the Cartesian axis x, with homogeneous Dirichlet
condition in the same direction but on the opposite face, see fig.3.5. The problem reads:

∇̂ ·P + ρ̂b = 0, in [0, L]3,

η(x = 0) · ex = 0,

η(x = L) · ex = p̄,

(3.9)

where ex is the unit vector in the x direction and p̄ is a prescribed pressure.
To correctly reproduce the steady state elastostatic response in (3.9), we have performed

unsteady simulations and we have waited the end of the transitory of the elastodynamic
system. For this purpose, we used as time discretization parameter ∆t = 0.001 s, with a
final time T = 0.005 s.

Table 3.1: Cube mesh properties.

Nodes Tetrahedra Length

125 384 1 cm

Table 3.2: Set of structural parameters for the cube and the cylinder.

ρ[g/cm3] E[dyne/cm2] ν κ[dyne/cm2] α[dyne/cm2] γ

1.2 6.0e6 0.45 1.0e8 2.0e6 0.8

Varying the load. We performed different simulations varying the value of the load
p̄. In fig.3.6 we observe the variation of the residual χ respect to the load and in fig.3.7
the number of iterations to reach convergence for each load. During simulations we assumed
ε = 10−4 and different values of the relaxation parameter α to verify the stopping criterion
(3.7) (see fig.3.8). We remark that the values of the relaxation parameter α are not optimal.
Therefore, the number of iterations to reach convergence can be decreased further.
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(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.5: The cube.
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Figure 3.6: Cube, residual χ vs. load p̄.
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Figure 3.7: Cube, number of iterations vs. load p̄.

46



3.4. Numerical results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

p̄(dyne/cm2)

R
el

ax
at

io
n

p
ar

am
et

er
α

St.Venant-Kirchhoff
Exponential

Figure 3.8: Cube, values of the relaxation parameter α vs. load p̄.
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In figures 3.9,3.10, for the load case p̄ = 0.625 · 106 dyne/cm2, we observe the comparison

between the reference geometry Ω̂ (in grey) and the deflated geometry Ω0 (in blue) calculated
in (3.5) at the end of the algorithm.

(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.9: St.Venant-Kirchhoff material cube, comparison between the refer-
ence geometry Ω̂ (in grey) and the deflated geometry Ω0 (in blue), for the load
case p̄ = 0.625 · 106 dyne/cm2. The deflated cube shows a shortening of 0.0887
cm in the x direction and an elongation of 0.0212 cm in the y and z directions.
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(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.10: Exponential material cube, comparison between the reference geo-
metry Ω̂ (in grey) and the deflated geometry Ω0 (in blue), for the load case
p̄ = 0.625 · 106 dyne/cm2. The deflated cube shows a shortening of 0.1012 cm
in the x direction and an elongation of 0.0266 cm in the y and z directions.
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Consistency test. As a consistency test, we can apply the load Pd, used in the al-
gorithm at steps 1 and 3, on the final deflated geometry Ω0 to obtain the reference geometry
Ω̂. In figures 3.11 and 3.12 we observe a very good overlapping between this two geometries
for both St.Venant-Kirchhoff and Exponential material cases.

(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.11: St.Venant-Kirchhoff material cube, comparison between the refer-
ence geometry Ω̂ (in grey) and the deflated geometry Ω0 (in green) reinflated with
the load p̄ = 0.625 · 106 dyne/cm2. After reinflation, the deflated cube length is
0.0055 cm shorter than the reference geometry one.
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(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.12: Exponential material cube, comparison between the reference geo-
metry Ω̂ (in grey) and the deflated geometry Ω0 (in green) reinflated with the load
p̄ = 0.625 · 106 dyne/cm2. After reinflation, the deflated cube length is 0.00046
cm longer than the reference geometry one.
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3.4.2 Cylinder

We consider here the inflation of a hollow cylinder, the simplest model to simulate a vessel.
The test consists in the application of the average intramural pressure Pd = 80 mmHg =
106640 dyne/cm2 coming from radiological images, with Dirichlet boundary conditions on
the basis, in the direction of the cylinder axis, and Robin boundary conditions on the external
surface in the radial direction, see fig.3.13. In particular, Robin boundary condition coefficient
β simulates the elastic behaviour of the tissues which surround the vessel in the human body
[67]. The problem reads:

∇̂ ·P = 0,

P(Rin) eR = Pd eR,

P(Rout) eR + βη(Rout) · eR = Pext eR,

η(z = −L/2) · ez = 0,

η(z = L/2) · ez = 0,

(3.10)

where eR and ez are the unit vectors associated to the radial and axial directions, Rin and
Rout are the inner and outer radii of the cylinder.

To correctly reproduce the steady state elastostatic response in (3.10), we have performed
unsteady simulations and we have waited the end of the transitory of the elastodynamic
system. For this purpose, we used as time discretization parameter ∆t = 0.001 s, with a
final time T = 0.005 s.
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3.4. Numerical results

(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.13: The cylinder.
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Chapter 3. The recovering of the correct initial geometry

Table 3.3: Cylinder mesh properties.

Nodes Triangles Tetrahedra Length Inner radius Outer radius

1540 1568 6720 1 cm 0.5 cm 0.6 cm

Harmonic extension problem Given Ω̂f and h(t), find η̂m(t) : Ω̂f → Ωf for any
t ∈ [t0, T ] suc that −∆η̂m(t) = 0 in Ω̂f ,

η̂m(t) = h(t) on ∂Ω̂f .
(3.11)

um =
∂η̂m
∂t

.

Varying the surrounding tissue coefficient. We performed different simulations
varying the value of the Robin boundary condition coefficient β. In fig.3.14 we observe the
variation of the final residual χ respect to the Robin boundary condition coefficient β and
in fig.3.15 the number of iterations to reach convergence for each β. The values of β are
chosen in the range of experimental results reported in [86]. During simulations we assumed
ε = 10−4 and different values of the relaxation parameter alpha to verify the stopping criterion
(3.7) (see fig.3.16). In particular, from figures 3.15 and 3.16 we observe that the number of
iterations and the values of α to reach convergence are the same for both materials. We
want to remark that the values of the relaxation parameter α are not optimal. Therefore,
the number of iterations to reach convergence can be decreased further.
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Figure 3.14: Cylinder, residual χ vs. load p̄.
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Figure 3.15: Cylinder, number of iterations vs. coefficient β.
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Figure 3.16: Cylinder, values of the relaxation parameter α vs. coefficient β.
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3.4. Numerical results

In figures 3.17 and 3.18, for the Robin boundary condition coefficient β = 0, we observe
the comparison between the reference geometry Ω̂ (in grey) and the deflated geometry Ω0 (in
blue) calculated in (3.5) at the end of the process.

(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.17: St.Venant-Kirchhoff material cylinder: comparison between the
reference geometry Ω̂ (in grey) and the deflated geometry Ω0 (in blue), for the
Robin boundary condition coefficient β = 0 dyne/cm3. The deflated cylinder
shows a reduction of the inner and the outer radii of 0.0358 cm and 0.0304 cm
respectively, and its thickness increases of 0.005 cm.
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Chapter 3. The recovering of the correct initial geometry

(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.18: Exponential material cylinder: comparison between the reference
geometry Ω̂ (in grey) and the deflated geometry Ω0 (in blue), for the Robin bound-
ary condition coefficient β = 0 dyne/cm3. The deflated cylinder shows a reduction
of the inner and the outer radii of 0.0372 cm and 0.0308 cm respectively, and its
thickness increases of 0.006 cm.
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3.4. Numerical results

Consistency test. As a consistency test, we can apply the load Pd, used in the al-
gorithm at steps 1 and 3, on the final deflated geometry Ω0 to obtain the reference geometry
Ω̂. In figures 3.19 and 3.20 we observe a very good overlapping between this two geometries
for both St.Venant-Kirchhoff and Exponential material cases.

(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.19: St.Venant-Kirchhoff material cylinder: comparison between the
reference geometry Ω̂ (in grey) and the deflated geometry Ω0 (in green) reinflated
with the load Pd = 80 mmHg = 106640 dyne/cm2. After reinflation, the deflated
geometry inner and outer radii are, respectively, 0.0017 cm and 0.0020 cm shorter
than the reference geometry ones.
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Chapter 3. The recovering of the correct initial geometry

(a) Lateral view. (b) Front view.

(c) Isometric view.

Figure 3.20: Exponential material cylinder: comparison between the reference
geometry Ω̂ (in grey) and the deflated geometry Ω0 (in green) reinflated with
the load Pd = 80 mmHg = 106640 dyne/cm2. After reinflation, the deflated
geometry inner and outer radii are, respectively, 0.00058 cm and 0.00052 cm
longer than the reference geometry ones.
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Chapter 4

Incompressible Navier-Stokes
equations in moving domain

In the first part of this chapter we introduce the Arbitrary Lagrangian Eulerian (ALE)
formulation for moving domains and the fluid and fluid domain problems. In the second part
we delineate the weak formulation, finite element and time discretization of such problems.

4.1 The blood modeling

To correctly describe the fluid-structure interaction (FSI) problem, in addition to the struc-
tural problem equations described in chapter 2, we must describe the equations governing
the fluid problem. The blood is a complex suspension of cells in plasma, with the concentra-
tion of cells ≈ 50% by volume and the plasma consisting of ≈ 90% water, 8% proteins, 1%
inorganic substances, and 1% emulsified fat. There are three major types of cells in blood:
erythrocytes (or red blood cells), leukocytes(or white blood cells), and platelets, as depicted
in fig.4.1. Erythrocytes are the most abundant cells in blood; they transport oxygen and
carbon dioxide. Mammalian erythrocytes are disk shaped (due to the absence of a nucleus)
with a diameter of approximately 8 µm and a thickness of 2 µm. Leukocytes represent less
than 1% of blood cells, but they have a critical role in producing antibodies and identifying
and disposing of foreign substances. Monocytes and lymphocytes are two particular types
of leukocytes that have been implicated in early stages of atherosclerosis, consistent with
the view that chronic inflammation is important [87]. Platelets control the conversion of the
plasma-borne protein fibrinogen to fibrin, a key structural element in a blood clot. Activa-
tion, aggregation, and accumulation of platelets depends on local hemodynamic loads and are
critical in both the normal processes of vessel healing/hemostasis and the abnormal events
that cause thrombosis.

Although the plasma consists primarily of water, the large concentration of cells in blood
results in a non-Newtonian rheological behavior. Specifically, blood exhibits a shear-thinning
behavior, with a higher overall viscosity at any shear rate in the presence of increased cell
concentration. Non-Newtonian models, are often used in computational modeling of blood
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Chapter 4. Incompressible Navier-Stokes equations in moving domain

Figure 4.1: The three major types of cells in blood.

flow [88]. Nevertheless, it is generally assumed that blood flow in large arteries, where the
shear rate is high, can be modeled reasonably well using a Newtonian fluid approximation.
This hypothesis is commonly accepted in literature for flow in main blood vessels (e.g. [89,
90, 20, 91, 92, 93] though it may be inaccurate in the small ones, or when the shear stress
in the fluid is below a critical threshold (e.g. in the venous system). However, in this work
we focus on the carotid artery, where the assumption of incompressible Newtonian fluid is
acceptable.

4.2 The fluid and the fluid domain problem

The first difficulty we have to face is the computation of the unknown moving fluid domain.
The idea is to use a moving mesh that follows the deformation of the physical border, i.e.
the fluid-structure (FS) interface Σ, and that is kept fixed on the artificial sections Σin

f ,Σout
f

(see fig.4.2).

We assume that the physical border displacement h is given. The fluid domain displace-
ment at the physical border must be equal to h, at the artificial one we decide to keep it
fixed. Considering the motion of fluid and fluid domain particles, on the physical border,
where the fluid domain particles have the same motion as the fluid, we adopt a Lagrangian
Navier-Stokes equations formulation. On the contrary, at the artificial sections, where the
fluid domain particles are fixed while the fluid ones follow their own independent motion, we
use an Eulerian Navier-Stokes equations formulation. Inside the fluid domain we consider an
hybrid behaviour. Indeed, near the physical border, the fluid domain velocity is similar to
the fluid one, becoming identical at Σ; approaching to the artificial border, instead, the fluid
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4.2. The fluid and the fluid domain problem

Figure 4.2: Moving mesh.

domain velocity tends to zero. We observe that, whatever it happens inside the domain, on
the borders two constraints must be respected, namely{

ηm = h on Σ,

ηm = 0 on Σf .
(4.1)

The ALE formulation is Lagrangian-Eulerian because it satisfy (4.1), following a Lag-
rangian treatment for Navier-Stokes equations on the physical interface and an Eulerian one
on the artificial sections, and it is Arbitrary because we choose which problem to solve inside
the physical and artificial borders. Between all the possible choices, we will solve an harmonic
extension problem.

Let At be a family of mappings (see fig.4.3), which at each t ∈ (t0, T ) associates a point x̂

of the fluid reference configuration Ω̂f (for instance the domain configuration at time t = t0)
to a point x in the current fluid configuration Ωf ,

At : Ω̂f ⊂ R3 → Ωf ⊂ R3, x(x̂, t) = At(x̂). (4.2)

At is assumed to be an homeomorphism, that is At ∈ C0(Ω̂f ) is invertible with continuous
inverse A−1

t ∈ C0(Ωf ). In addition, we assume that the application

t→ x(x̂, t), x̂ ∈ Ω̂f ,

is differentiable almost everywhere in [t0, T ].

The coordinates x̂ ∈ Ω̂f are the ALE coordinates, while x = x(x̂, t) ∈ Ωf will be denoted
as the spatial coordinates. Let us define a function v defined on the Eulerian frame

v : Ωf × [t0, T ]→ R,

and the corresponding function v̂ := v ◦ At on the ALE frame

v̂ : Ω̂f × [t0, T ]→ R, v̂(x̂, t) := v(At(x̂), t).
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Chapter 4. Incompressible Navier-Stokes equations in moving domain

Figure 4.3: The ALE frame described by the map At, which maps a reference
(initial) domain into the current one. Σ is the fluid-structure interface, while Σ1

and Σ2 are the inlet and the outlet surfaces respectively.

The symbol
DA

Dt
will indicate the time derivative on the ALE frame, written in the spatial

coordinates:

DAv

Dt
: Ωf × [t0, T ]→ R,

DAv

Dt
(x̂, t) =

∂v̂

∂t
(x̂, t), x̂ = A−1

t (x).

We can now define the fluid domain velocity um as

um :=
DAx

Dt
.

and, using the classical chain rule on the time derivative, for a given function w we have

DAw

Dt
=
∂w

∂t
+
DAx

Dt
· ∇w =

∂w

∂t
+ um · ∇w.

Harmonic extension problem. Let us suppose to know the moving boundary dis-
placement h(t) : ∂Ω̂f → Ωf for any t ∈ [t0, T ]. We consider an harmonic extension of the
datum h(t) in order to calculate the fluid domain displacement η̂m(t) also in the internal
points:

Given Ω̂f and h(t), find η̂m(t) : Ω̂f → Ωf for any t ∈ [t0, T ] suc that−∆η̂m(t) = 0 in Ω̂f ,

η̂m(t) = h(t) on ∂Ω̂f .
(4.3)

The fluid domain velocity will be easily recovered in the following manner

um =
∂η̂m
∂t

. (4.4)
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4.2. The fluid and the fluid domain problem

Fluid problem. Denoting by uf (x, t) the fluid velocity, pf the fluid pressure and ρf
the fluid density, we can introduce the Navier-Stokes equations defined in the Eulerian frame
[94, 95]: ρf

∂uf
∂t

+ ρf (uf · ∇)uf −∇ ·Tf (uf , pf ) = ff , in [t0, T ]× Ωf ,

∇ · uf = 0, in [t0, T ]× Ωf ,
(4.5)

where ff represents body forces (per unit volume) acting on the fluid and Tf is the Cauchy
stress tensor

Tf (uf , pf ) = 2µD(uf )− pfI and D(uf ) =
∇uf + (∇uf )

T

2
,

where I is the identity tensor and µ is the dynamic viscosity, which here is taken as a positive
constant.

We have seen that map At allows to conveniently express the time variation of relevant
quantities (displacement, velocity, pressure) at the nodes of the moving computational mesh.
I would not write Navier-Stokes equations in an eulerian frame because the fluid domain is
moving, and I would not use their lagrangian formulation too because the fluid domain is
fixed at the artificial borders. I want to write Navier-Stokes equation in a suitable system
that is joint with map At. From the Reynold’s transport formula, we use the total time
derivative written in a frame wich follows a particular direction l:

Dv

Dt
:=

∂v

∂t
− (uf − l) · ∇xv, (4.6)

where (uf − l) is the effective convective term seen from the chosen frame. Relation (4.6)
states that the variation in time of a quantity v is made up of a part belonging to the node
of the mesh (∂v

∂t
) and a part due to node movement with velocity uf . We observe that l is

the reference frame velocity. If l = uf we obtain the lagrangian formulation, if l = 0 we come
back to the eulerian one. When we choose the fluid domain as the reference frame we have
l = um and we obtain the Navier-Stokes equations in the ALE formulation [96, 47]:ρf

DAuf
Dt

+ ρf ((uf − um) · ∇)uf −∇ ·Tf (uf , pf ) = ff , in [t0, T ]× Ωf ,

∇ · uf = 0, in [t0, T ]× Ωf ,
(4.7)

We must add to these equations some initial conditions for the velocity field

uf (x, 0) = u0
f in Ω̂f ,

and suitable boundary conditions. The boundary ∂Ωf can be splitted into two non-overlapping
parts ∂Ωf = Σf,D

⋃
Σf,N , in order to consider the following boundary conditionsuf = φf on Σf,D,

Tf · n = ψf on Σf,N ,

where n is the unit outward normal vector to ∂Ωf and φf ,ψf are two given data with enough
regularity.
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Chapter 4. Incompressible Navier-Stokes equations in moving domain

4.3 Finite element formulation

4.3.1 Weak formulation for the fluid and the fluid domain prob-
lems

Harmonic extension problem. The weak formulation of the problem (4.3) needs the
introduction of the following functional spaces:

V̂m = [H1(Ω̂f )]
3,

V̂
D

m = [HΣf,D
(Ω̂f )]

3 =
{

v̂ ∈ V̂f , v̂ = 0 on Σ̂f,D

}
.

(4.8)

Then the weak formulation of problem (4.3) reads:

Weak-formulation 4.1. (Continuous setting). Find t → η̂m(t) ∈ V̂m, with η̂m(t) = h(t)
on Σm,D, such that ∫

Ω̂f

η̂m(t) · v̂ dΩ = 0, ∀v̂ ∈ V̂
D

m. (4.9)

Fluid problem. In order to write the weak formulation of problem (4.7) we need to
introduce the following functional spaces:

V̂f = [H1(Ω̂f )]
3,

V̂
D

f = [HΣf,D
(Ω̂f )]

3 =
{

v̂ ∈ V̂f , v̂ = 0 on Σ̂f,D

}
,

Q̂f = L2(Ω̂f ),

Q̂f,0 =

{
q̂ ∈ Q̂f ,

∫
Ω̂f

q dΩ = 0

}
,

(4.10)

and

Vf =
{

v : Ωf × I → R3,v = v̂ ◦ A−1
t , v̂ ∈ V̂f

}
, (4.11)

Qf =
{
q : Ωf × I → R, q = q̂ ◦ A−1

t , q̂ ∈ Q̂f

}
. (4.12)

VD
f is defined in a similar manner. We illustrate now two possible weak formulations for the

fluid problem in the ALE frame taken from [97].

The weak non-conservative formulation of the problem (4.7) reads:

Weak-formulation 4.2. (Continuous setting). For almost every t ∈ I, find t→ uf (t) ∈ Vf ,
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4.3. Finite element formulation

with uf (t) = φf (t) on Σf,D, uf (0) = u0
f in Ω̂f and find t→ pf (t) ∈ Qf such that

ρf

∫
Ωf

DAuf
Dt

· v dΩ + ρf

∫
Ωf

((uf − um) · ∇)uf · v dΩ

+2µ

∫
Ωf

D(uf ) : ∇v dΩ−
∫

Ωf

pf∇ · v dΩ =

∫
Ωf

ff · v dΩ +

∫
Σf,N

ψf · v dγ ∀v ∈ VD
f ,∫

Ωf

∇ · ufq = 0 ∀q ∈ Qf .

(4.13)

We remark that if Σf,N = 0 the space VD
f coincides with [H1

0 (Ωf )]
3. In this case the space

Qf in (4.13) should be replaced by Qf,0 (i.e. the pressure is defined up to a constant) and the
non-homogeneous Dirichlet boundary datum ψf (t) must satisfy the compatibility condition∫

∂Ωf

φf (t) · n dγ = 0 ∀t ∈ I.

The weak conservative formulation of the problem (4.7) reads:

Weak-formulation 4.3. (Continuous setting). For almost every t ∈ I, find t→ uf (t) ∈ Vf ,

with uf (t) = φf (t) on Σf,D, uf (0) = u0
f in Ω̂f and find t→ pf (t) ∈ Qf such that

ρf
d

dt

∫
Ωf

uf · v dΩ + ρf

∫
Ωf

∇ · ((uf − um)⊗ uf ) · v dΩ

+2µ

∫
Ωf

D(uf ) : ∇v dΩ−
∫

Ωf

pf∇ · v dΩ =

∫
Ωf

ff · v dΩ +

∫
Σf,N

ψf · v dγ ∀v ∈ VD
f ,∫

Ωf

∇ · ufq = 0 ∀q ∈ Qf .

(4.14)

where the symbol ⊗ indicates the tensor product and gives us the possibility to write the
convective term in conservative form. The conservative form states that, in absence of source
terms, the variation of uf over the domain Ωf is due only to boundary terms (for details see
[97]).

4.3.2 Finite element discretization

For the finite element approximation of problem (4.13), or equivalently (4.14), we need both
the fluid equations discretization and the fluid domain movement one. We consider a tri-
angulation T̂f,h of the reference domain Ω̂f , which is here supposed made up of elements
with straight edges, for simplicity. In addition, let us consider the space of finite elements
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Fn(T̂f,h) of degree n. In literature there are many finite element spaces V̂f,h and Q̂f,h that

approximate V̂f and Q̂f respectively, satisfying the inf-sup (or LBB) condition [98]:

inf
q̂h∈Q̂f,h

sup
v̂h∈V̂f,h

∫
Ω̂f

∇ · v̂hqh dΩ

‖v̂h‖H1(Ω̂f )‖q̂h‖L2(Ω̂f )

≥ β, (4.15)

where the constant β > 0 is independent from h. We remind that this property is necessary
for the well posedness of the discrete problem and the optimal convergence of the method.
Among the choices that satisfy (4.15), we mention the Taylor-Hood finite elements P2−P1 and
the choice P1bubble−P1, where a piecewise linear approximation for the pressure is employed
and the velocity is approximated by piecewise linear funtctions suitably enriched with bubble
functions which are element-based polynomials that vanish on the element boundary.

The proper ALE extension of the discrete spaces to a moving domain are

Vf,h =
{

vh : Ωf,h × I → R3,vh = v̂h ◦ A−1
h,t , v̂ ∈ V̂f,h

}
, (4.16)

Qf,h =
{
q : Ωf,h × I → R, qh = q̂h ◦ A−1

h,t , q̂h ∈ Q̂f,h

}
. (4.17)

where Ωf,h = Ah,t(Ω̂h), with Ah,t the discrete ALE mapping obtained by a finite element
approximation of the harmonic extension problem (4.3).

The discrete version of the non-conservative problem (4.13) reads:

Weak-formulation 4.4. (Discrete setting). For almost every t ∈ I, find t→ uf,h(t) ∈ Vf,h,

with uf,h(t) = φf,h(t) on Σf,D, uf,h(0) = u0
f,h in Ω̂f and find t→ pf,h(t) ∈ Qf,h such that

ρf

∫
Ωf

DAuf,h
Dt

· vh dΩ + ρf

∫
Ωf

((uf,h − um,h) · ∇)uf,h · vh dΩ

+2µ

∫
Ωf

D(uf,h) : ∇vh dΩ−
∫

Ωf

pf,h∇ · vh dΩ

=

∫
Ωf

ff · vh dΩ +

∫
Σf,N

ψf · vh dγ ∀vh ∈ Vf,h ∩VD
f,h,∫

Ωf

∇ · uf,hqh = 0 ∀qh ∈ Qf,h.

(4.18)

where φf,h and u0
f,h are suitable approximations of φf and u0

f , respectively, and um,h is the
discrete fluid domain velocity

um,h =
∂η̂m,h
∂t

. (4.19)

In (4.19), η̂m,h is the solution of the following discrete harmonic extension problem:
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4.3. Finite element formulation

Weak-formulation 4.5. (Discrete setting). Find t → η̂m,h(t) ∈ V̂m,h, with η̂m,h(t) = h(t)

on Σ̂f , such that ∫
Ω̂f

η̂m,h(t) · v̂h dΩ = 0 ∀v̂h ∈ V̂m,h, (4.20)

where V̂m,h ⊂ V̂ .

We remark that if Σf,N = 0 and φf = 0, the convective term∫
Ωf

(uf · ∇)uf · v dΩ

does not contribute to the energy of the system (4.13). Indeed, by taking v = uf we have∫
Ωf

(uf · ∇)uf · uf dΩ =
1

2

∫
Ωf

uf · |uf |2 dΩ = −1

2

∫
Ωf

∇ · uf |uf |2dΩ,

where the last term is equal to zero thanks to (4.13)2 and to the fact that |uf |2 ∈ Qf . This
property is not true at the discrete level in (4.18). Indeed,∫

Ωf

(uf,h · ∇)uf,h · uf,h dΩ = −1

2

∫
Ωf

∇ · uf,h|uf,h|2dΩ 6= 0,

since, in general, |uf,h|2 /∈ Qf,h. Then we obtain the correct energy balance (at least in the
case of a fully Dirichlet problem) modifying (4.18) in a consistent way, i.e. by adding to
(4.18)1 the term

1

2

∫
Ωf

∇ · uf,huf,h · vh dΩ,

in order to recover the stability property at the discrete level too. This modification is
consistent since (4.7)1 holds. In the sequel, we will always consider this modified problem.

The weak stabilized non-conservative formulation of the problem (4.7) reads:

Weak-formulation 4.6. (Discrete setting). For almost every t ∈ I, find t→ uf,h(t) ∈ Vf,h,

with uf,h(t) = φf,h(t) on Σf,D, uf,h(0) = u0
f,h in Ω̂f and find t→ pf,h(t) ∈ Qf,h such that

ρf

∫
Ωf

DAuf,h
Dt

· vh dΩ + ρf

∫
Ωf

((uf,h − um,h) · ∇)uf,h · vh dΩ

+
ρf
2

∫
Ωf

∇ · uf,huf,h · vh dΩ + 2µ

∫
Ωf

D(uf,h) : ∇vh dΩ

−
∫

Ωf

pf,h∇ · vh dΩ =

∫
Ωf

ff · vh dΩ +

∫
Σf,N

ψf · vh dγ ∀vh ∈ Vf,h ∩VD
f,h,∫

Ωf

∇ · uf,hqh = 0 ∀qh ∈ Qf,h.

(4.21)
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Let {ψi}Np

i=1 be the Lagrange basis associated to the space Qf,h and
{
ϕj
}Nv

j=1
those associ-

ated to Vf,h ∪VD
f,h. In addition, let

{
ϕbk
}Nb

v

k=1
be the set of basis functions corresponding to

the nodes on Σf,D, such that
{
ϕj
}
⊕
{
ϕbk
}

is a basis for Vf,h. We set

uf,h(x, t) =
Nv∑
j=1

uj(t)ϕj(x, t) +

Nb
v∑

j=1

ubj(t)ϕ
b
j(x, t),

and

pf,h(x, t) =
Nv∑
j=1

pj(t)ψj(x, t).

where the nodal values ubj are known from the boundary datum φf , and {uj} and {pj} are
the unknowns of the problem.

The weak stabilized conservative formulation of the problem (4.7) reads:

Weak-formulation 4.7. (Discrete setting). For almost every t ∈ I, find t→ uf,h(t) ∈ Vf,h,

with uf,h(t) = φf,h(t) on Σf,D, uf,h(0) = u0
f,h in Ω̂f and find t→ pf,h(t) ∈ Qf,h such that



ρf
d

dt

∫
Ωf

uf,h · vh dΩ + ρf

∫
Ωf

∇ · ((uf,h − um,h)⊗ uf,h) · vh dΩ

−ρf
2

∫
Ωf

∇ · uf,huf,h · vh dΩ + 2µ

∫
Ωf

D(uf,h) : ∇vh dΩ

−
∫

Ωf

pf,h∇ · vh dΩ =

∫
Ωf

ff · vh dΩ +

∫
Σf,N

ψf · vh dγ ∀vh ∈ Vf,h ∩VD
f,h,∫

Ωf

∇ · uf,hqh = 0 ∀qh ∈ Qf,h,

(4.22)

4.3.3 Time discretization

Let ∆t be the time discretization parameter and tn = n∆t, n ∈ N. Given a generic function
z, we denote by zn the approximation of z(tn). We consider a backward Euler scheme to
discretize in time equations (4.21) and (4.22).
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We can now discretize the non-conservative formulation (4.21) obtaining

ρf
1

∆t

∫
Ωn+1

f

un+1
f,h · vh dΩ + ρf

∫
Ωn+1

f

((u∗f,h − u∗m,h) · ∇)un+1
f,h · vh dΩ

+
ρf
2

∫
Ωn+1

f

∇ · u∗f,hun+1
f,h · vh dΩ + 2µ

∫
Ωn+1

f

D(un+1
f,h ) : ∇vh dΩ

−
∫

Ωn+1
f

pn+1
f,h ∇ · vh dΩ =

∫
Ωn+1

f

ff · vh dΩ

+

∫
Σn+1

f,N

ψn+1
f · vh dγ + ρf

1

∆t

∫
Ωn+1

f

unf,h · vh dΩ ∀vh ∈ Vf,h ∩VD
f,h,∫

Ωn+1
f

∇ · un+1
f,h qh = 0 ∀qh ∈ Qf,h.

(4.23)
For the conservative formulation (4.22) we have

ρf
1

∆t

∫
Ωn+1

f

un+1
f,h · vh dΩ + ρf

∫
Ωn+1

f

∇ · ((u∗f,h − u∗m,h)⊗ un+1
f,h ) · vh dΩ

−ρf
2

∫
Ωn+1

f

∇ · u∗f,hun+1
f,h · vh dΩ + 2µ

∫
Ωn+1

f

D(un+1
f,h ) : ∇vh dΩ

−
∫

Ωn+1
f

pn+1
f,h ∇ · vh dΩ =

∫
Ωn+1

f

ff · vh dΩ

+

∫
Σn+1

f,N

ψn+1
f · vh dγ + ρf

1

∆t

∫
Ωn+1

f

un+1
f,h · vh dΩ ∀vh ∈ Vf,h ∩VD

f,h,∫
Ωn+1

f

∇ · un+1
f,h qh = 0 ∀qh ∈ Qf,h,

(4.24)
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Chapter 5

Fluid-Structure Interaction

The purpose of this chapter is to introduce the equations describing the fluid-structure in-
teraction (FSI) problem and to describe the partitioned strategies used for the numerical
solution.

5.1 Introduction

FSI is present in many engineering situations like vibrations of aeronautics structures and
suspended bridges, flow into pipelines, oscillations of long electrical cables spans, wind tur-
bines and many others. FSI is a major issue in the haemodynamic field too. Indeed, in
large arteries, blood flow interacts mechanically with the vessel wall, giving rise to a com-
plex FSI mechanism with a continous transfer of energy between the blood and the vessel
structure (see, e.g., [99, 100, 48, 101, 102, 103, 20]). Tipically, this substantial amount of
energy, exchanged between fluid and structure in each cardiac cycle, generates a strongly
non-linear coupled problem. The FSI problem is usually solved by considering the Arbitrary
Lagrangian-Eulerian (ALE) formulation for the fluid problem [47, 96], which leads to the
solution of a coupled problem, formed by three subproblems, namely the fluid, the struc-
ture and the fluid domain problems. The latter problem, tipically an harmonic extension,
is necessary to reconstruct the fluid domain. We remark that we do not have any structure
domain problem since it coincides with the structure problem itself, due to the Lagrangian
framework used for this problem.

5.2 The FSI problem

Starting from the description of the structure problem in chapter 2 and from the description
of the fluid in moving domains in chapter 4, we can consider the coupled fluid-structure
interaction problem, obtained when a fluid exchanges a significant amount of energy with a
deformable solid. In this case, the fluid domain is an unknown of the problem and depends
on the solid displacement at the FS interface. In particular, the interface position of the
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fluid domain must coincide with the solid position at the interface, which is unknown since
it depends on the interaction between the two subproblems. We refer to this source of
non-linearity as geometrical coupling. In addition, we have to satisfy the continuity of the
velocity and the continuity of the normal stresses at the FS interface. The former is the the
well-known no-slip condition, the latter comes from the action-reaction principle.

We consider an open domain Ωf ⊂ R3, see fig.5.1, to represent the lumen vessel in a certain
instant t. The inflow and the outflow sections are denoted by Σf,i. The incompressible Navier-
Stokes equations in ALE configuration for a Newtonian fluid (4.23) and (4.24) are assumed
to hold in Ωf .

Figure 5.1: Description of the FSI domain: fluid domain Ωf on the left, structure
domain Ωs on the right.

On the structural side, we consider an open domain Ωs ⊂ R3, see fig.5.1, to represent the
vessel wall. The intersection of Ωs and Ωf is empty, and Σ = Ωs∪Ωf is the FS interface. We
define a normal unit vector n on Σ, pointing outward of the solid domain and inward to the
fluid domain. The inflow and the outflow sections are denoted by Σs,i, and Σout represents
the external surface of the structure domain.

The FSI problem in the strong formulation and in the ALE frame reads

1. Fluid-Structure problem. Given the (unknown) fluid domain velocity um and the
fluid domain Ωf , find, at each time t ∈ (t0, T ], the fluid velocity uf , the fluid pressure
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pf , and the structure displacement ηs such that

ρf
DAuf
Dt

+ ρf ((uf − um) · ∇)uf −∇ ·Tf (uf , pf ) = ff , in Ωf ,

∇ · uf = 0, in Ωf ,

ρ̂s
∂2η̂s
∂t2
− ∇̂ ·P(η̂s) = f̂s, in Ω̂s,

uf =
∂ηs
∂t

, on Σ̂,

Ts(ηs)n−Tf (uf , pf )n = 0, on Σ̂.

(5.1)

where the two matching conditions enforced at the FS interface are the continuity of
velocities (5.1)4 and the continuity of normal stresses (5.1)5.

2. Geometry problem. Given the (unknown) interface structure displacement η̂s|Σ̂, find
the displacement of the points of the fluid domain ηm such that−∆η̂m = 0 in Ω̂f ,

η̂m = η̂s on Σ̂,
(5.2)

and then find accordingly the fluid domain velocity

ûm =
∂η̂m
∂t

,

and the new points xf of the fluid domain by moving the points x̂f of the reference

domain Ω̂f as

xf = x̂f + η̂m. (5.3)

Note that now the physical border displacement h = η̂s is unknown. We observe that
(5.2)2 guarantees the coincidence between the displacement of the fluid and the structure
interface (geometrical conformity), whereas (5.3) guarantees that the mesh and structure

velocities coincide at FS interface. Note that now the displacement at the physical border Σ̂
is un unknown.

Problems (5.1) and (5.2) have to be endowed with suitable boundary conditions on Ωf Σ

and Ω̂s Σ̂, and with suitable initial conditions.

5.2.1 Time discretization

Applying a backward Euler scheme, time discretization of problems (5.1) and (5.2) reads as
follows
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1. Fluid-Structure problem. Given the (unknown) fluid domain velocity un+1
m and the

fluid domain Ωn+1
f , the solution at previous time steps, and functions fn+1

f and fn+1
s ,

find fluid velocity un+1
f , fluid pressure pn+1

f , and structure displacement ηn+1
s such that



ρf
1

∆t
un+1
f + ρf ((u

n+1
f − un+1

m ) · ∇)un+1
f −∇ ·Tf (u

n+1
f , pn+1

f ) = fn+1
f + ρf

1

∆t
unf , in Ωn+1

f ,

∇ · un+1
f = 0, in Ωn+1

f ,

ρ̂s
1

∆t2
(
η̂n+1
s − 2η̂ns + η̂n−1

s

)
− ∇̂ ·P(η̂n+1

s ) = f̂
n+1

s , in Ω̂s,

un+1
f = un+1

s , on Σ̂n+1,

Ts(η
n+1
s )n−Tf (u

n+1
f , pn+1

f )n = 0, on Σ̂n+1.

(5.4)

2. Geometry problem. Given the (unknown) interface structure displacement η̂n+1
s |Σ̂,

solve an harmonic extension problem−∆η̂n+1
m = 0 in Ω̂f ,

η̂n+1
m = η̂n+1

s on Σ̂,
(5.5)

and then find accordingly the discrete fluid domain velocity by

ûn+1
m =

1

∆t

(
η̂n+1
m − η̂nm

)
,

and the points xn+1
f of the new fluid domain by

xn+1
f = x̂0

f + η̂n+1
m .

5.2.2 Boundary conditions

In this section we detail the inflow and outflow boundary conditions for the FSI problem
considered in this work, as well as the condition we have imposed on the external surface
Σout . In particular, some portions of the computational domain boundary do not correspond
to any physical boundary and are just introduced to limit the domain of interest. In fig.5.1
the artificial boundaries are the sections Σf,j and Σs,j , while Σout is a physical wall. For the
fluid problem, we consider flow rate conditions necessary to impose the physiological data at
the inlet section. Moreover, we define absorbing conditions useful to reduce non physiological
reflection generated by artificial outlets. Instead, for the solid problem we consider a Robin
condition to model the surrounding tissue on the external wall.
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Figure 5.2: An image from an eco-color-doppler ultrasound machine.

Flow rate conditions. The prescription of boundary data on the artificial sections
can be based on clinical measurements. Nevertheless, point-wise data are often not available.
Indeed, the most common measurement techniques used in the clinical practice, as the eco-
color-doppler (ECD), gives average data for example of the velocity, over small volumes of
blood of the lumen, as showed in fig.5.2. In particular, the eco-color-doppler signal can be
regarded as an histogram, evolving in time, of the blood red cells velocity in the location
of interest. Following [104, 105], the signal extracted from the eco-color-doppler image is
obtained, after image noise removal with a threshold filter, computing the quantile of order
0.95 from all the histograms in time, as indicated with the red line in fig.5.3(a). This signal is
then smoothed by projecting the signal on a Fourier basis with a Fourier transform estimated
period. Then, from the velocity, we obtain the patient-specific flow rate (see fig.6.17). At
the fluid inlet we prescribe this patient-specific flow rate

Q =

∫
Ωf

uf · n dΩ, (5.6)

and we impose a flat velocity profile. This imposition consists in a Dirichlet condition uf = g
in (5.6), with g(t) = Q(t)/A(t) · n and |g| = VmaxECD

/2, where VmaxECD
is the fluid peak

velocity measured from ECD.

Absorbing boundary conditions. In heamodynamic problems pressure waves travel
along the arterial system (see [106, 107, 108, 109]). The imposition of a suitable outflow
boundary condition, which does not induce spurious reflections (these effects happen when
free stress or non physiological stress are applied), is a major issue in this kind of applic-
ations. In order to avoid the phenomenon of spurious reflections, it is possible to follow
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(a) The red line represents the eco-color-doppler estimated velocity.

(b) The eco-color-doppler estimated flow rate.

Figure 5.3: From the eco-color-doppler image to the patient-specific flow rate.

the geometrical multiscale approach [107], where we prescribe a suitable absorbing boundary
condition by coupling the 3D compliant model with a 1D reduced model. Indeed, in [107],
the authors considered a cylinder of radius R, length L and with S the section normal to
the axis z of the cylinder and wrote an hyperbolic system that allows to capture propagative
phenomena along the axis of the cylinder. Then, they assumed that one of the characteristic
variables of the system was zero at an outflow Σ (for details see [110]) and, considering the
resistance absorbing boundary conditions, they calculated the following defective resistance
boundary condition in the normal direction [111]

1

|Σ|

∫
Σ

(Tfn) · n dσ −Re

∫
Σ

u · n dσ = Pe, on Σ, (5.7)

where the resistance Re is a constant and is given by

Re =

√
ρfτ

0

2
√
π

1

A
3/4
0

, (5.8)

and Pe is the external pressure. In the expression of Re, A0 is the area of the surface S at
t = 0 and τ 0 comes from the following

τ =
EHs

√
π

(1− ν2)R2
, (5.9)

when (5.9) is calculated with A0,and Hs is the vessel thickness, E is the Young modulus, ν
the Poisson modulus.
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Let us remark that the proposed resistance boundary condition in the normal direction
has to be completed with a condition in the tangential direction τ , e.g.

(Tfn) · τ = 0, on Σ.

Robin condition for the surrounding tissue. Vessels are constrained radially by the
surrounding tissue. A common hypothesis about the surrounding tissue is that it takes up
a considerable portion of the intravascular pressure and significantly reduces the wall strain
and stress. From the analysis reported in [86], the radial constraint of the surrounding tissue
was quantified as an effective perivascular pressure on the outer surface of the vessel, which
was estimated as 50% or more of the intravascular pressure. For carotid arteries at pressure
of 100 mmHg, the circumferential wall stretch ratio in the intact state was ≈ 20% lower than
in the untethered state, and the average circumferential stress was reduced by ≈ 70%. We
use a 0D model to describe the presence of a surrounding tissue around the vessel as shown
in fig.5.4. In particular, we prescribe the following Robin boundary condition on Σout (see

Figure 5.4: Section of the FSI domain. The blue line represents the surrounding
tissue, the dark red line describes the vessel wall and the red area indicates the
vessel lumen.

[112, 67, 113])

αeη̂s + P(η̂s)n̂ = Pextn̂. (5.10)

where αe (in [dyne/cm3]) is the elastic coefficient used to describe an elastic behaviour of the
surrounding tissue [67, 86].

5.3 Partitioned algorithms for the numerical solution

of the FSI problem

We are here interested in partitioned algorithms for the numerical solution of the FSI problem
(5.4), which consist in the successive solution of the three subproblems (the fluid, the structure
and the fluid domain problems) in an iterative framework [114, 115, 116, 103, 117, 118]. The
main difficulties related to the numerical solution of a FSI problem are the following:
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1. the fluid computational domain is an unknown of the problem and we have to enforce the
continuity of displacements at the fluid-structure (FS) interface (geometrical interface
condition);

2. the fluid and the structure subproblems are both non-linear (constitutive non-linearities);

3. we have to guarantee the continuity of velocities and normal stresses at the fluid-
structure interface ( physical interface condition).

The geometrical interface condition can be managed following two different strategies.
The first strategy consists in an exact treatment of the interface position, in which the geo-
metrical interface condition is satisfied exactly (geometrical exact schemes), through, for
example, fixed point or Newton iterations (see, e.g., [119, 120]). The second strategy consists
in an inexact treatment of the interface position, in which this condition is not satified, due
to an explicit treatment of the interface position by extrapolation from previous time steps
(the so-called semi-implicit schemes, e.g., [102, 121, 110]), or, in general, to an a priori fixing
of the number of iterations over the interface position [113] (geometrical inexact schemes).
However, in the haemodynamic context, when dealing with three-dimensional real geometries
and physiological data, it is still not clear which treatment of the fluid-structure interface is
appropriate for pratical purposes. Recently, in [113] it has been shown that general geomet-
rical inexact schemes, obtained by performing just few iterations over the interface position,
are effective in haemodynamics in the case of the linear infinitesimal elasticity, providing the
expected time convergence rate when high order temporal schemes are considered and ac-
curate solutions when dealing with three-dimensional real geometries and physiological data,
and being very efficient from the computational point of view.

The second difficulty is represented by the fluid and the structure constitutive non-
linearities. In haemodynamics, for the case of the linear infinitesimal elasticity, the first
one (due to the convective term in the Navier-Stokes equations) have been tipically treated
together with the geometrical interface condition, so that we can identify also for this non-
linearity an exact and an inexact treatment. In [112], another treatment has been discussed,
where the convective term has been treated differently from the geometrical interface con-
dition. When also the structure consitutive non-linearity is present, different treatments
have been considered, as those derived form the application of the Newton method to the
interface problem [120, 122] and those obtained by the application of suitable linearization
of the monolithic system. Regarding the last strategy, some authors stressed the modular-
ity of the related algorithms, leading to partitioned schemes. A first approach of this type
(holding for a geometrical exact or inexact scheme) consists in solving the non-linear fluid
and structure subproblems in an iterative framework until convergence of the physical inter-
face conditions(see for example the classical Dirichlet-Neumann scheme). At each iteration
two non-linear subproblems have to be solved [123, 124, 125, 126]. In this case, the con-
stitutive non-linearities are treated in an inner loop with respect to both the physical and
the geometrical interface conditions. A second strategy considered so far consists in applying
the quasi-Newton method to the monolithic non-linear system. In [119], the author pro-
posed a block-diagonal approximation of the Jacobian, relying to a partitioned algorithm
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where all the interface conditions and non-linearities are treated in the same loop (see also
[127, 126, 128, 129, 130]). In [113], the authors considered new different approximations of
the Jacobian, leading to different, most efficient partitioned algorithms. Such schemes are
Double-loop schemes, where there is an external loop to manage the geometrical interface
condition and the costitutive non-linearities and an internal one to prescribe the physical
interface conditions.

Concerning the physical interface condition, after a suitable linearization of the con-
stitutive and geometrical non-linearities - whichever of the two strategies is adopted for the
treatment of the interface position (implicit or explicit) - one has to deal with a linearized FSI
problem. However, this problem is still coupled through the interface continuity conditions.
Up to now, two strategies have been proposed namely the monolithic and the partitioned
approaches. In the first case, the problem is solved by building the whole FSI matrix, and
then by solving the related linear system with a suitable preconditioned Krylov [119, 100],
domain-decomposition [112] or multigrid [131, 132] method. Obviously, in this way the inter-
face continuity conditions are automatically satisfied. Alternatively, in partitioned schemes
one solves the fluid and structure subproblems in an iterative framework, until fulfillment
of the interface continuity conditions. It has been clearly highlighted in several works that
the physical conditions have to be treated implicitly in haemodynamics, due to the high
added-mass effect characterizing this case (see, e.g., [133, 116, 115, 103, 114]).

Robin-Robin partitioned procedures. We are focusing on partitioned algorithms
that involve the solution of separate fluid and structure problems through the exchange of
suitable transmission conditions at the FS interface Σ. At convergence, they guarantee the
continuity of the velocity and the normal stress at Σ.

To solve system (5.4) we have to take into account the added-mass effect, that is present
when the fluid and the structure densities are of the same order or when the domain is very
slender. Indeed, if we use the classical Dirichlet-Neumann (DN) scheme, which consists in
solving iteratively the fluid problem with the structure velocity as Dirichlet condition at the
FS interface, and the structure problem with the fluid interface normal stress as Neumann
condition at the same interface, the convergence properties of this scheme deteriorate due to
the added-mass effect. It has been shown in [115, 133, 134] that in presence of a large added-
mass effect, DN algorithm needs a strong relaxation and features a very slow convergence.
Two straightforward alternatives proposed for haemodynamic problems are the Neumann-
Dirichlet (ND) and the Neumann-Neumann (NN) schemes. However, the former has even
worse numerical properties than DN and the latter do not improve substantially the results
obtained with DN scheme [116].

We consider now a linear combination of the interface continuity of velocities and nor-
mal stresses, i.e. (5.4)4−5, that leads to a set of Robin-type transmission conditions [103].
Introducing two suitable coefficients, αf and αs, with αf 6= αs, we can writeαfu

n+1
f + Tf (u

n+1
f , pn+1

f )n = αfu
n+1
s + Ts(η

n+1
s )n, on Σ̂n+1,

αsu
n+1
s −Ts(η

n+1
s )n = αsu

n+1
f −Tf (u

n+1
f , pn+1

f )n, on Σ̂n+1.
(5.11)
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Using this conditions we introduce a family of partitioned schemes with better convergence
properties. The Robin-Robin (RR) scheme consists in solving iteratively the fluid subprob-
lem with Robin condition (5.11)1 at the FS interface, and the structure problem with Robin
condition (5.11)2 at the FS interface. This algorithm generates a family of partitioned pro-
cedures. Indeed, the classical DN and ND algorithms can be recovered with αf →∞, αs = 0
and αf = 0,αs → ∞, respectively. The particular cases of αs = 0 or αf = 0 lead to the
Neumann-Robin and the Robin-Neumann schemes, respectively. Moreover, when αf → ∞
or αs → ∞ we obtain the Dirichlet-Robin and Robin-Dirichlet schemes, respectively. RR
algorithm has good convergence properties and it is independent of the added-mass effect
when the parameters αf and αs are suitably chosen, as shown in [103, 135].

Double-loop algorithm To solve the non-linear FSI problem (5.4) we will consider a
Double-loop algorithm. The idea is to consider an external loop to manage the geometrical
interface condition and the constitutive non-linearities, and an internal loop to treat the
physical interface condition with a Robin-Robin scheme.

Let us introduce

• the fluid solver operator F ;

• the structure solver operator S;

• the fluid domain operator H.

Using the above operators the Double-loop scheme reads as follows
External loop. Given the solution at iteration k, solve at the current iteration k+1 until

convergence

1. The harmonic extension H(η̂k+1
m ) = 0 in Ω̂f ,

η̂k+1
m = η̂k+1

s on Σ̂,

obtaining the fluid domain velocity ûm and the new fluid domain Ωf .

2. The linearized FSI problem in a known domain. For its solution, we consider the
following RR partitioned algorithm

Internal loop n iterations. Given the solution at subiteration l − 1, solve at the
current subiteration l until convergence or until l ≤ n

(a) The fluid subproblem with a Robin condition at the FS interfaceF(uk+1
f,l , p

k+1
f,l ,u

k+1
m ) = f k+1

f , in Ωk+1
f ,

αfu
k+1
f,l + Tf (u

k+1
f,l , p

k+1
f,l )n = αfu

k+1
s,l−1 + Ts(η

k+1
s,l−1)n, on Σ̂k+1,
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(b) The structure subproblem with a Robin condition at the FS interfaceS(η̂k+1
s,l ) = f̂

k+1

s in Ω̂s,

αsu
k+1
s,l −Ts(η

k+1
s,l )n = αsu

k+1
f,l −Tf (u

k+1
f,l , p

k+1
f,l )n, on Σ̂k+1.
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Chapter 6

Haemodynamic results

In this chapter we first introduce the carotid artery stenosis pathology. Then we describe
the numerical simulations performed on a patient-specific carotid by using the C++ parallel
finite element library LifeV [22]. Our aim is to compare FSI results on inflated and deflated
patient-specific carotid, showing differences in the displacement, velocity, pressure field, and
in the wall shear stress (WSS) haemodynamic factor.

6.1 Carotid artery stenosis

Several factors play a role in the development of the carotid artery stenosis. Non modi-
fiable risk factors include age, race, sex, genetic, and family history and modifiable ones
include smoking, hyperlipidemia, sedentary lifestyle, increased body mass index, alcohol and
substance abuse, diabetes mellitus, hypertension, prior transient ischemic attack or stroke,
elevated anticardiolipin antibodies, presence of a carotid bruit, cardiac disease and increased
fibrinogen. The geometry of the carotid bifurcation itself can be considered a risk factor. In-
deed, the unique geometry of the carotid bifurcation governs the local haemodynamics, which
is implicated in carotid artery wall heterogeneity. Most people with carotid stenosis have no
symptoms until the artery becomes severely narrowed or a clot forms. Symptoms are most
likely to first appear with a mini-stroke, also known as a transient ischemic attack. Carotid
stenosis is a progressive narrowing of the carotid arteries in a process called atherosclerosis.
Normal healthy arteries are flexible and have smooth inner walls. With age, hypertension
and small injuries to the blood vessel wall can allow plaque formation. Plaque is a sticky
substance made of fat, cholesterol, calcium and other fibrous material. Over time, plaque
deposits inside the inner wall of the artery can form a large mass that narrows the lumen,
the inside diameter of the artery (see fig.6.1).

Several study have shown that carotid arterial stenosis occur where the common carotid
artery (CCA) bifurcates into the internal carotid artery (ICA) and external carotid artery
(ECA) (see fig.6.2 ).

The carotid bulb, or sinus, appears to host a unique blood flow environment and is
thought to play a role in local blood flow disturbances that lead to endothelial cell damage
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Figure 6.1: A carotid plaque.

and subsequent plaque formation. After impinging on the carina of the bifurcation, blood
flow is redirected downstream into the carotid branches. Due to tight turn, the inertial force
on the flowing blood precludes it from following the outer curvature of the carotid sinus
and flow separates, creating local flow disturbances. The proximal segment of ICA, where
flow is separated, is the most common site for the development of the plaque. There are
different types of carotid plaques. In particular the surgeons distinguish in homogeneous
and heterogeneous plaques. In general, homogeneous plaques are stable, with deposition of
fatty streaks and fibrous tissues. Artherosclerotic changes include diffuse intimal thickening
that results from the migration of medial smooth muscles cells into the subendothelial space
thought the fenestration into the intimal elastic lamina. Intimal growth includes increasing
amounts of the elastic fibres, collagen, and glycosaminoglicans. These plaques rarely have
evidence of hemorrhage or ulcerations. As the atherosclerotic plaque develops, the elicited
biologic response is an attempt to cover the plaque with a fibrous cap, as dedpicted in
fig.6.3. Unfortunately, over time the fibrous cap may rupture and release the underlying
debris into the circulation. Restabilization of the ruptured plaque includes a normal cascade
of wound healing responses leading to heterogeneous structure. Heterogeneous plaques are
unstable, with histological characteristics of lipid-laden macrophages, monocytes, leukocytes,
necrotic debris, cholesterol crystals, and calcifications. These plaques are soft and friable but
may harden with calcium, lipid, and cholesterol accumulation within the vessel wall. Surface
irregularities or plaque ulceration have also been shown to be risk factors for thromboembolic
events. Ulcerated plaques consist of soft, gelatinous clots that contain platelets, fibrin, white
blood cells, and red blood cells. The complicated plaque may undergo rupture, intraplaque
hemorrhage, extensive necrosis, calcification, and subsequent thrombosis. Infiltration of the
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6.1. Carotid artery stenosis

Figure 6.2: Eco-color-doppler scan of plaque formation at internal carotid artery
(ICA).

fibrous cap by foam cells may also contribute to the rupture. Extensive studies of plaque
characteristics have revealed a correlation between the histologic features of a plaque and its
susceptibility to cause thromboembolic events. In general, symptomatic carotid disease is
not a result of inadequate perfusion due to a high degree of stenosis, rather, patients with
symptomatic carotid disease usually have heterogeneous plaques that are the source of shed
emboli. The degree of carotid artery stenosis alone may not enable an adequate prediction
of which patients will suffer strokes.

Plaque characteristics have been studied not only to elucidate the cause of the disease
but also in an effort to correlate them with either intravascular or perivascular findings at
ultrasonography (US). However, effort is directed also toward the development of less-invasive
characterization techniques, such as magnetic resonance (MR) imaging. Soft heterogeneous
plaques that are more likely to be related to stroke usually have low echogenicity at US.
This corresponds to the weak reflection of ultrasound and the echolucency of the lipid and
hemorrhage content of the plaque [136, 137].

The hypothesis that blood flow patterns at the carotid bifurcation have a substantial
bearing on the predilection of this region to atherosclerosis has led to a comprehensive in-
vestigation into the associated hemodynamics [138, 139]. Many factors, such as blood flow
velocity, mural tensile stress, turbulence, and arterial wall shear stress (WSS) have been pro-
posed as causative factors in the initiation of atheroma. WSS in particular has been explored
and consequently implicated as an atherogenic factor by many investigators [140, 141, 142].
Initial hypotheses involving WSS contended that atheroma formation at sites with low wall
shear is due to a decreased efflux of cholesterol [12]. Other studies [142] have suggested that
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Figure 6.3: Plaque formation process.

atheroma formation occurs at sites with high WSS due to damage caused to the endothelium.
Vascular zones susceptible to plaque formation have been found to experience a combination
of low and oscillating shear stresses, whereas zones with high wall shear are relatively free
of disease [138, 141, 143]. A comparison of WSS distribution in vitro in carotid bifurcation
models and the distribution of intimal plaque thickness obtained at autopsy showed minimal
plaque formation at the flow divider wall of the sinus (region of high shear), greater intimal
thickening at sinus side walls (region with circumferential velocity components, intermediate
oscillatory shear), and maximal thickening at the outer walls (region of flow separation, flow
reversal, low and oscillating shear) [140, 144]. Strong correlations were found between in-
timal thickening and the reciprocals of maximum wall shear and mean wall shear and between
intimal thickening and oscillating shear index [140].

WSS parameter With regard to vessel bifurcations, such as the carotid arteries shown
in this chapter, we know that atherosclerosis affects in particular regions of the external wall
immediately after the bifurcation [145, 146]. In these areas, WSS acting on the endothelial
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cell surface [147], is weaker than other regions of the vessel. Two areas of WSS values have
been identified, that appear to induce opposite effects on the arterial wall:

• WSS > 15 dyne/cm2 induces endothelial quiescence and an atheroprotective gene
expression profile;

• WSS < 4 dyne/cm2 is prevalent at atherosclerosis-prone sites, stimulates an athero-
genic phenotype.

It is also possible to demonstrate the correlation between arteriovenous malformations
in cerebral arteries and WSS [148]. Hence, a proper evaluation of this hemodynamic para-
meter can then provide relevant clinical data for a correct treatment of artheriosclerosis and
correlated patologies in arteries.

The WSS index represents the surface stress on the wall induced by fluid dynamic field:

W̃SS = −µ[(∇ux · nΣ)ex + (∇uy · nΣ)ey + (∇uz · nΣ)ez],

WSS = W̃SS − (W̃SS · nΣ)nΣ,
(6.1)

where ux, uy, uz are the velocity components in cartesian coordinates, nΣ is the normal vector
with respect to the interface and ex, ey, ez are the cartesian versors.

In the fig.6.4, it is possible to see typical values on WSS for carotids, and in the table 6.1,
it is shown the WSS range for healty and pathological arteries.

Figure 6.4: Typical values of WSS for carotids. Taken from [147]

Table 6.1: WSS range for healty and pathological arteries.

Healthy artery Atherosclerosis Thrombosis

WSS range [dyne/cm2] 10÷ 17 −4÷ 4 70÷ ≥ 100
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6.2 Numerical results

In this section, we apply the numerical methods described in chapter 5 to solve the FSI
problem in a patient-specific human carotid artery geometry. In particular, we build the 3D
geometry starting by magnetic resonance angiography (MRA) image and using the Vascular
Modeling Toolkit (VMTK) open source program [85]. In fig.6.5, we show an MRA image of
healthy left and right carotids.

Figure 6.5: A MRA image of left and right carotids.

However, these images could provide just information concerning the interface between
the lumen and the vessel. Therefore, just the fluid computational domain could be generated
and no information about the vessel are provided. To overcome this limitation and obtain
the vessel computational domain, in this work we decided to extrude the lateral surface of
the fluid domain in the normal direction. The extrusion is proportional to 24% of the lumen
radius.

We performed two FSI simulations, the first with the inflated carotid geometry reconstruc-
ted from radiological images and the second with the calculated deflated carotid geometry (see
chapter 3). In both numerical simulations, we consider the compressible St.Venant-Kirchhoff
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material, whose first Piola-Kirchhoff tensor is defined in (2.42), here reported:

P =
λ

2
(I1(C)− 3)F− µF + µFC

The finite element discretization is performed by P1bubble − P1 elements. The set of
structural and fluid parameters used in the simulations are listed in table 6.2 and are typical
values for biological tissues [13, 28, 38, 39].

Table 6.2: Set of structural and fluid parameters for the inflated and deflated
geometries.

ρs[g/cm
3] E[dyne/cm2] ν κ[dyne/cm2] α[dyne/cm2] γ ρf [g/cm

3] µf [poise]

1.1 3.0e6 0.49 1.0e7 1.034e6 1 1.0 0.03
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The inflated geometry. The inflated geometry is directly reconstructed from MRI or
CT scans. The mesh properties are showed in table 6.3 and in fig.6.6 we show the inflated
solid mesh.

Table 6.3: Inflated geometry mesh properties.

Nodes Tetrahedra Triangles

Inflated solid mesh 9732 43362 9936
Inflated fluid mesh 6913 34581 5238

(a) Longitudinal view. (b) Longitudinal section.

Figure 6.6: The inflated solid mesh. CCA stands for Common Carotid Artery,
ECA for External Carotic Artery, and ICA for Internal Carotid Artery.
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The deflated geometry. The deflated geometry is calculated applying the algorithm
showed in chapter 3 to the inflated geometry. The mesh properties are showed in table 6.4
and in fig.6.7 we show the deflated solid mesh.

Table 6.4: Deflated geometry mesh properties.

Nodes Tetrahedra Triangles

Deflated solid mesh 9732 43362 9936
Deflated fluid mesh 6683 33159 5212

(a) Longitudinal view. (b) Longitudinal section.

Figure 6.7: The deflated solid mesh. CCA stands for Common Carotid Artery,
ECA for External Carotic Artery, and ICA for Internal Carotid Artery.
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In fig.6.8 we compare the inflated geometry (in grey) reconstructed from radiological
images, and the deflated geometry (in blue) calculated from the inflated one.

(a) Inlet view. (b) Outlet section view.

Figure 6.8: Comparison between inflated (in grey) and deflated (in blue) carotid
geometries. The deflated geometry shows an inlet radii 9% shorter than the
inflated one.

FSI simulation boundary conditions. The boundary conditions we used for the
numerical simulations are the following:

• at the inlet we prescribed the flow rate obtained by the eco-color-doppler using the
procedure described in section 5.2.2 (see also [104, 105]). In particular, we measured
the fluid peak velocity from eco-color-doppler, VmaxECD

, at a distance of 2 cm from the
bifurcation;

• at the outlets we imposed a constant resistance condition (see (5.7) and (5.8)) for the
fluid;

• the initial conditions (p0
f , η̂

0
s, η̂

0
m,u

0
f ) were homogeneous;

• for the solid, at the outlets we imposed homogeneous Dirichlet condition, while at
the inlet we imposed homogeneous Dirichlet condition for the normal direction and
homogeneous Neumann condition for the tangential direction;

• at the external solid wall we imposed the Robin condition for the surrounding tissue
(see (5.10)) with αe = 1e6 dyne/cm3;
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• we used Backward Euler/Backward Euler as temporal scheme, with a time step ∆t =
0.002 s and a final time T = 0.8 (a cardiac cycle);

• we ran the simulations on 8 processors for the solution of the fluid and on 1 processor
for the solution of the structure.

In fig.6.9,6.10 and 6.11 we report the solid displacement, the velocity and the wall shear
stress at systole for both inflated and deflated geometries, while in fig.6.12,6.13 and 6.14
we show the same quantities of interest at dyastole. We observe small differences for all the
quantities at hand. Indeed, the deflated geometry has only slight lower displacements respect
to the inflated one. The recirculation regions next to the bifurcation, at the entrance of the
external carotid artery and inside the internal carotid artery, shows small differences between
the two geometries. Regarding the WSS values, we observe a more remarkable difference in
the area of fluid impingement inside the ICA, see fig.6.15.

Figure 6.9: Solid displacement [cm] for the inflated (left) and the deflated (right)
geometries at systole.
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Figure 6.10: Velocity [cm] for the inflated (left) and the deflated (right) geo-
metries at systole.

Figure 6.11: Wall shear stress [cm] for the inflated (left) and the deflated (right)
geometries at systole.
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Figure 6.12: Solid displacement [cm] for the inflated (left) and the deflated
(right) geometries at diastole.

Figure 6.13: Velocity [cm] for the inflated (left) and the deflated (right) geo-
metries at diastole.
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Figure 6.14: Wall shear stress [cm] for the inflated (left) and the deflated (right)
geometries at diastole.

Figure 6.15: Particular of the wall shear stress distribution inside the internal
carotid artery, for the inflated (left) and the deflated (right) geometries at systole.
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In figures 6.17 and 6.18 we show the variation of flow rate and pressure during the whole
cardiac cycle for the inflated and deflated geometries at two different sections (see fig.6.16).
We find a smaller flow rate in the case of the deflated geometry (-6%) and a pressure field
that is slightly higher (+3%) at systole respect to the inflated geometry one.

Figure 6.16: The two sections considered to evaluate flow rate and pressure
fields in figures 6.17 and 6.18.
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(a) CCA section.

(b) Bifurcation section.

Figure 6.17: Flow rate [cm3/s] comparison between inflated and deflated geo-
metries at two different sections.
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(a) CCA section.

(b) Bifurcation section.

Figure 6.18: Pressure [mmHg] comparison between inflated and deflated geo-
metries at two different sections.
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Conclusions

The prestressed state of human arteries is a well-known problem in literature, as we showed
in Chapter 3. We chose to simulate this prestress using a deflated geometry, i.e. a 3D recon-
structed geometry coming from radiological images (MRI or CT scans) that has been deflated
to a 0 mmHg pressure. Then we performed physiological fluid-structure simulations starting
from this deflated geometry. Haemodynamic results suggest that the use of correct deflated
geometries as initial reference configuration for fluid-structure interaction simulations are
required to achieve accurate FSI simulations in haemodynamics because highlighted discrep-
ancies in flux rate and pressure are not neglectable.
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Appendix: Functional spaces

In this appendix we recall the main functional spaces used in this work. In particular, to
derive the weak formulation of the structural and FSI problems we have used the space Lp

and Hq. They belong to the family of Banach spaces where the latter is defined as follows:

Definition .1. A Banach space is a normed linear space that is a complete metric space
with respect to the metric derived from its norm.

For example, the space Rn or Cn equipped with the p-norm defined as:

||(x1, x2, ..., xn)||p = (|x1|p + |x2|p + ...+ |xn|p)(1/p) ,

for p <∞, and

||(x1, x2, ..., xn)||∞ = max{|x1|, |x2|, ..., |xn|} , for p =∞ ,

is a finite-dimensional Banach space.

Definition .2. The space Lp(Ω), 1 ≤ p < ∞ is the set of measurable functions v(x) in
Ω ⊂ Rn defined as:

Lp(Ω) = {v : Ω 7→ R such that

∫
Ω

|v(x)|p dΩ <∞ , }

with the following norm:

||v||Lp(Ω) =

(∫
Ω

|v(x)|p dΩ

)1/p

More precisely Lp is the space of equivalence classes of measurable functions where the
equivalence relation is defined in the following manner: v is equivalent to w if and only
if v and w are equal almost everywhere in Ω [69].
A special case of the spaces Lp(Ω) is that of square integrable functions Lp(Ω), with p = 2:

L2(Ω) = {f : Ω 7→ R such that

∫
Ω

|f(x)|2 dΩ < +∞ , }

The L2(Ω) norm is associated to the scalar product[69]:

||f||L2(Ω) =
√

(f, g)L2(Ω) ,
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where

(f, g)L2(Ω) =

∫
Ω

f(x)g(x)dΩ , (.2)

is the scalar product in L2(Ω). It can be shown that the functions belonging to L2(Ω) are
special distributions. However, it is not granted that their distributional derivatives are still
functions of L2(Ω). Therefore it is appropriate to introduce the following spaces:

Definition .3. Given Ω ⊂ Rn, the Sobolev space of order k in Ω, is the space formed by all
functions of L2(Ω) having all distributional derivatives up to order k, belonging to L2(Ω):

Hk(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω), ∀α : |α| ≤ k} .

For the Sobolev spaces it is possible to demonstrate the following result:

Property .1. If Ω is an open subset of Rn with sufficiently smooth edge,then:

Hk(Ω) ⊂ Cm(Ω) if k > m+ n
2
.

A particular case of Hk(Ω) is the space H1
0(Ω); this space is very useful and it is defined as:

H1
0(Ω) = {f ∈ L2(Ω) : D1f ∈ L2(Ω) and f(∂Ω) = 0} .
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